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Abstract. In this study, the NTRU cryptosystem is examined on companion matrices. These matrix types
have been studied due to the rapid selection of matrices that will serve as private keys. Again, using some
interesting and important linear algebra properties of companion matrices, the NTRU cryptosystem has
been studied in a different and specific ring. Some results obtained place the NTRU crypto system on solid
foundations in algebraically. NTRU cryptosystem was found to be stronger than Knapsack method. And
a new type of digital signature has been obtained over companion matrices.

1. Introduction

In 1996, NTRU was first introduced by J. Hoffstein, J. Pipher and J. Silverman in Crypto’ 96 [1]. Then
NTRU’s developers contributed to NTRU which is denoted as a ring-based and a public key encryption
method by making parameter optimization [2]. In 2003, they introduced NTRUSIGN [3], i. e., a digital
signature version of NTRU. In the same year, they with another team made a presentation which analyzed
decryption errors of NTRU [4]. J. H. Silverman published a technical report about invertible polynomials in
a ring in 2003 [5]. In 2005, J. H. Silverman ve W. Whyte published a technical report which analyzed error
probabilities in NTRU decryption [6]. Also, the founding team which published an article on effects increas-
ing security level of parameter choosing [7] has published related reports in the website www.ntru.com.

NTRU is quitely resistant to quantum computers based attacks as well as its speed. The basic reason of
protecting this resistant bases on finding a lattice vector with the least length and powerfulness of problems
of finding a lattice point closest to private key into a high dimensional lattice [8]. Unlike the other public key
cryptosystems, the sheltering structure of the NTRU cryptosystems against these quantum based attacks
moves it more interesting and developing position day by day.

Some examples of quietly full-scale non-destructive attacks to the NTRU cryptosystem were originally
made by Coppersmith et al. in 1997 [9]. Then new parameters which does away with effects of this attack
were presented by Hoffstein et al. in 2003 [10].

As an another example of attack [11], it has increased importance up till today by presenting to more
powerful, current and new parameters and solutions to the NTRU cryptosystem organized an attack of
splitting the difference [12].

On behalf of detailed readings, it can be seen to [13–15] for different of attacks types, and on the contrary,
it can be seen to [16–18] for proposed new parameters and new system.
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2. Aim and Scope

In this study, which is aimed to carry the NTRU cryptosystem on robust algebraic structures, some
interesting properties and results were added to the cryptosystem theoretically. Taking advantage of the
fact that matrices are larger and more complex than a vector, more attention has been paid to security, which
is the main purpose of cryptology. For this purpose, the newly proposed cryptosystem has been tried to
be presented in a more complex and powerful form. But at the same time, since companion matrices are
determined by a vector with a basic rule, the new proposed system is also considered to be practical and
useful. In the light of this study, new lattice types will be determined and security analyzes can be made
by arranging attacks on the proposed NTRU cryptosystem.

3. NTRU Parameters

These are parameters using in the encryption and decryption operations of NTRU and in the key
generation processes:

• N : it determines a maximum degree of polynomials being used. N is chosen as a prime so that the
process is preserved against attacks, and it is chosen big enough so that the process is preserved from
lattice attacks.

• q : it is a large module and it is chosen as a positive integer. Its values differ relatedly what we aim in
the process.

• p : it is a small module and generally a positive integer. it is rarely chosen as a polynomial with small
coefficients.

The parameters N, q and p can be differently chosen according to the preferred security level. The case
(p, q) = 1 is always preserved so that the ideal (p, q) is equal to the whole ring.

• L f ,L1 : sets of private key, sets in which chosen polynomials to be kept confidential chosen for
encryption.

• Lm : it is a plain text set. it is stated a set of unencrypted and codable polynomials.

• Lr : it is a set of error polynomials. It is stated a set of arbitrarily chosen error polynomials with small
coefficients in the phase of encryption.

• center : it is a centralization method. An algorithm guaranteing which mod q reductions works in
perfect truth in the phase of decryption.

It can be seen [1] for a perscrutation of the NTRU parameter which is introduced above in general for now
and can be given its values in the next section.

4. Algebraic background of NTRU

4.1. Definitions and notation

The encryption operations of NTRU is performed in a quotient ring R = Z[x]/(xN
− 1). N is a positive

integer and it is generally chosen as a prime. If f (x) is a polynomial in R, then fk denotes a coefficient of
xk for every k ∈ [0,N − 1] and f (x) denotes a value of f in x for x ∈ C. A convolution product h = f ⋆ 1 is
given by hk =

∑
i+ j≡k mod N fi · 1 j where f and 1 are two polynomials in R. When NTRU was first introduced,

it was chosen p and q as a power of 3 and 2, respectively. The subset Lm : consisted of polynomials with
the coeffients {−1, 0, 1} called ternary polynomials. The private keys f ∈ L f was usually chosen in the form
1 + p · F. The studies shows that it can be chosen p as a polynomial and parameters can be varied.
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4.2. Key generation
1. f ∈ L f and 1 ∈ L1 is arbitrarily chosen such that f is invertible in mod p and mod q.

2. Fq = f−1 mod q and Fp = f−1 mod p.

3. A private key is (p,Fp).

4. A public key is H = p · 1 ⋆ Fq mod q.

It is noted that 1 cannot be used in the phase of decryption. Thus, it cannot be given as a private key. Since
H ⋆ f = p · 1 mod q, H ⋆ f = 0 mod p which cannot be used when mod p is substituted.

4.3. Encryption
If the encryption is represented in an algorithmic language;

Input: a message m ∈ Lm and a public key H.
Output: a cipher message e ∈ Υ(m)

1. Chose r ∈ Lr arbitrarily.

2. Return e = r ⋆H +m mod q.

The set Υ(m) denotes plain texts m which can be encrypted.

4.4. Decryption
If a phase of decryption is represented as algorithmic, an algorithm D acts e as below:

Input: a cipher message e ∈ Υ(m) and a private key (p,Fp).
Output: a plain text D(e) = m ∈ Lm.

1. Calculate a mod q = e ⋆ f modq.

2. Have a polynomial amodq with integer coefficients from a = p · r ⋆ 1 + f ⋆ m ∈ R by performing
centralization operation.

3. m mod p = a ⋆ Fp mod p

4. a plain text m = Ψ mod p

It is noted thatΨ is the mappingΨ : m 7−→ m mod p. That is, it performsΨ : Lm −→ Lm mod p. It is important
choosing of a convenient parameter in order to work decryption operation impeccably, i.e., D(e) = m.

5. Companion Matrices

Because of having the interesting algebraic properties, some preliminaries are given before the compan-
ion matrices’ contribution to the NTRU system is mentioned.

Remark 5.1. Unless otherwise specified, the polynomials whose constant terms are not ”0” are used.

Definition 5.2. [19] A companion matrix of a monic polynomial P(x) = c0 + c1x + ... + cn−1xn−1 + xn on a field K is
a square matrix defined by as follows:

CP =


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...
...
. . .

...
...

0 0 . . . 1 −cn−1


.
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In consideration of Definition 4.1, a base v1, v2, ..., vn of a vector space V on the field K is translated in the
form of

Cvi = Civ1 = vi+1, i < n

by means of a matrix C.

Remark 5.3. It is moved to the NTRU system interesting algebraic properties such as the characteristic and minimal
polynomials of a companion matrix C f of a monic and irreducible polynomial f ∈ K[x] chosen from a ring K[x] of
polynomials of a variable x on a field K are same and the roots of this polynomial are eigenvalues of C f .

Remark 5.4. An arbitrarily irreducible polynomial f is chosen in this study when operating in a module xn
− 1 = 0

in the classical NTRU system, and the matrix C f operates 1 7−→ x.1 for 1 ∈ Rq in the ring.

Remark 5.5. Calculating inverses of a private key f is long in the NTRU ring but calculating the inverse of C f is
easy for irreducible f whose leading coefficient is not 0 in this study. The constant term of f is found by det C f = a0

and C−1
f =

Adj C f

det C f
for a0 , 0.

Remark 5.6. Even though the inverse of f ∈ R in mod p is known, it is also necessary to calculate its inverse in
mod q. In fact, the forms C−1

f + pU and C−1
f + qU, U ∈Mn×n of a matrix C−1

f found in the form of C f .C−1
f = I are the

inverses of C f in mod p and mod q, respectively.

5.1. Characterization

A characteristic and minimal polynomials of a matrix CP are same and it equals to P. Moreover, the
following statements are equivalent

• A is similar to a companion matrix on the field K,

• a characteristic and minimal polynomials of A are same and its degree is n,

• there exists a vector v ∈ V in the space V = Kn such that {v,Av,A2v, ...,An−1v} is a new base of V,

where A is a n × n matrix on the field K (See [19]).

Remark 5.7. Every square matrix is not similar to a companion matrix. However, it can be assimilated to a block
matrix whose blocks are companion matrices.

5.2. Diagonalisation

If all roots of a chosen polynomial P(x) are discrete, then the corresponding companion matrix CP can
be diagonalized by

vCPv−1 = dia1(τ1, τ2, ..., τn)

where τ1, τ2, ..., τn are different roots of P (See [19]).

5.3. Determinant

The determinant of the corresponding companion matrix is non-zero as long as the constant term of the
relevant polynomial P(x) of a companion matrix is not zero.
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6. The Construction of The NTRU based Cryptographic Application On The Companion Matrices

Choosing parameters is generally as in the classical NTRU choices and different choices are applied in
some special cases. For example, the choices p, q and N remain the same in general. But a private key is
mostly chosen by a irreducible polynomial whose constant term is non-zero. Now, let the system be stated
mathematically. First, a polynomial m ∈ Rq be mapped to a companion matrix by means of a mapping φ
defined by

φ : Rq −→MC

φ(m) =


0 0 . . . 0 −m0
1 0 . . . 0 −m1
...
...
. . .

...
...

0 0 . . . 1 −mn−1


where MC is a set of companion matrices. It is clear that φ is well-defined and one-to-one. Also, the
mapping φ−1 maps a matrix Cm to m ∈ Rq which determines single Cm. Let polynomials f , 1, r ∈ Rq be
chosen arbitrarily such that their constant terms are non-zero. The relevant companion matrices C f , C1 and
Cr are constituted and a message m ∈ Rq is sent by calculating in the form of

Ce = p.Cr.Ch + Cm (mod q)

where C−1
f .C1 = Ch is a public key. It is indicated that Ce does not need to be a companion matrix. Ce is only

chosen for the notation rapport. Besides, the addition and multiplication of companion matrices from the
set MC are the ordinary matrix addition and multiplication, respectively.

Proposition 6.1. The classical NTRU encryption algorithm runs properly over the companion matrices.

Proof. If the constant term of f is not sero, then det C f , 0 and there exists C−1
f . If the equation

Ce = p.Cr.Ch + Cm (mod q)

is multiplied by C f , then it is obtained

C f .Ce ≡ p.Cr.C1 + C f .Cm (mod q)

, and so an equation
C f .Ce ≡ C f .Cm (mod p)

is reached in mod p under choosing of the proper parameters. If the latest equation is multiplied by C−1
f ,

then it follows that
Ce ≡ Cm mod p

which Ce = Cm mod p for m ∈ Rq chosen under the condition Cm = Cm (mod p) and φ−1(Ce) = φ−1(Cm) = m
in the final step, i.e., the claim is proved. ⊠

Theorem 6.2. If q is chosen as a prime number, f is chosen as an irreducible polynomial and deg f = n, then
Rq = Zq[x]/⟨ f (x)⟩ is a field and is a n-dimensional vector space on the field Zq. If j times rotations of m to the right
is denoted by m j for m = (m0,m1, ...,mn−1) and e j = (0, 0, ..., x j, ..., 0), where Cp is a companion matrix of p ∈ Rq and
m ∈ Rq is chosen an arbitrary polynomial according to the classical base {1, x, x2, ..., xn−1

}, then the statement

e j.
n∑

i=0

miCi
p = m j

is verified.



M. Sever / TJOS 9 (2), 147–156 152

Proof. It is sufficient to prove the theorem for the base vector e1 = (1, 0, ..., 0). It follows that

e1.
∑n

i=0 miCi
p = e1.[m0I +m1Cp +m2C2

p + ... +mn−1Cn−1
p ]

= m0e1 +m1e2 + ... +mn−1en (Cpei = ei+1)
= (m0,m1, ...,mn−1)
= m.

If it is multiplied from left by e2 instead of e1, then the result is the second rotation of m, and if it is multiplied
from left by en instead of e1,, then the result is the n-th rotation of m. Thus, the claim is proved. ⊠

Let theorem 6.1 be added to the NTRU system.

Theorem 6.3. In addition to the conditions in Proposition 6.1, a matrix Ct is chosen for extra t ∈ Rq, a message
m ∈ Rq is sent by encrypting in the form of

Ce = p.Cr.Ch +
∑

miCi
t (mod q),

and it is properly decrypted by adding an extra base e1 to the set of private keys.

Proof. If the final step of Proposition 6.1 is reached without repeating similar steps, then it follows that

e1.Ce = e1

∑
miCi

t = m

when
Ce =

∑
miCi

t mod p (1)

is multiplied by the base vector e1. Hence, the proof is completed. ⊠

Remark 6.4. An arbitrary base e j can be chosen as a private key instead of the base e1. Since it follows the j. rotation
of the message, the message can be reached by the inverse rotation.

Theorem 6.5. Let a polynomial t ∈ Rq be determined such that it does not have a multiple zero. Then (t, t′) = 1
where t′ is the derivative of the polynomial t. There exists s ∈ Rq satisfying the statement

t′.Ct.[s].αT = 1

for a vector

αT =


1
α
...
αn−1


where α is a root of t.

Proof. Since t does not have a multiple zero, t′ , 0 and Ct is an invertible matrix. Under these conditions,
there exists at least one solution to the n equation system with n variables so that this solution can be chosen
as [s]. ⊠

Theorem 6.3 is used in the NTRU system as follows.

Theorem 6.6. After the encryption algorithm stated in Proposition 6.1 is calculated in the form of

ec = p.Ch.Cr + Cm (mod q),

if the encrypted form
t′.Ct.[s].ec = e′c

is sent, then the message m is properly reached.
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Proof. Since t′.Ct.[s].[αT] = 1 from Theorem 6.3, the first code e′c.[αT] = ec is reached and the later steps are
as in Proposition 6.1. Hence, the vector αT can be added to the set of secret keys by means of a root of a
chosen polynomial t. ⊠

Theorem 6.7. If A1, A2, A3 and A4 are companion matrices on Rq, then a message m ∈ Rq × Rq can be sent double
lengt by means of a matrixA by

A =

[
A1 A2
A3 A4

]
.

Proof. The companion matrices Ai are invertible for 1 ≤ i ≤ 4. Since detA = det A1.A4−det A2.A3, the matrix
A is invertible under the condition det A1.A4 , det A2.A3 and so the message m is properly decrypted ifA
is chosen as a secret key and is added to the system in the form of

ce ≡ p.
[

Cr Cr
Cr Cr

]
.

[
Ch Ch
Ch Ch

]
+A.

[
Cm Cm
Cm Cm

]
mod q. ⊠

7. A New Multiplication Type of Companion Matrices

A new multiplication of companion matrices defined on Z is introduced.
Let the multiplication of the relevant companion matrices Cx and Cy of vectors x = (x0, x1, ..., xn−1) and

y = (y0, y1, ..., yn−1) be definde by
θ : MC ×MC −→MC

θ(Cx,Cy) =


0 0 0 . . . 0 ⟨x, y⟩
1 0 0 . . . 0 ⟨x, y⟩
0 1 0 . . . 0 ⟨x, y⟩
...
...
...
. . .

...
...

0 0 0 . . . 1 ⟨x, y⟩


,

respectively. It is obvious thatθ is a binary operation on MC. That is, it is well-defined and closed. However,
there exists no unit element according to this operation, and so there exists no invertible elements. When
the vectors x and y are arbitrarily chosen, the operation θ can generate an output[

0
I α

]
for any α ∈ Z. A linear equation

a1x1 + a2x2 + ... + anxn + b = 0

has also infinite solutions in Zn. If the set {x1, x2, ..., x j−1, x j+1, ..., xn} is known or xi are chosen for xi , x j
under the choice of all ai , 0, then x j is known from the formulae

x j = −
b
a j
−

∑
i, j

ai

a j
xi.

Therefore, there exists a vector (xi) which can give the output b for a chosen vector (ai). Exactly q of these
solutions are in Zq. Now, let the addition be defined in MC by

⊕ : MC ×MC −→MC

⊕(Cx,Cy) =
[

0
I x + y

]
.
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⊕ is a well-defined and closed operation on MC. A zero of this operation is an element

⊕(Cx,Cy) =
[

0
I 0
]
.

The following proposition can be given without proof.

Proposition 7.1. There exists at least one Cy such that θ(Cx,Cy) = 0MC , when Cx is known for x, y ∈ Zn whose
componenets are non-zero.

Proposition 7.1 can be added to the NTRU based cryptosystem as below.
C f is obtained and is hidden such that θ(C1,C f ) = 0 for an arbitrarily chosen 1 ∈ Rq. Also, Cr is obtained

and θ(Cr,C1) = Ch is shared as a public key for an arbitrarily chosen r ∈ Rq. When a message Cm is
encrypted, Ce calculated as

Ce ≡ p.θ(Cr,C1) ⊕ (C1 ⊕ Cm) mod q (2)

is sent to the receiver by paying attention that θ(C f ,Cm) , 0. Ch is hold as a public key, C f and the matrices
Cm.θ(C f ,Cm) are hold as secret keys.

Theorem 7.2. The encrypted message m can be properly obtained from Equation (7.2).

Proof. If Equation (7.2) is multiplied by C f , then

θ(C f ,Ce) ≡ p.θ(C f , θ(Cr,C1)) ⊕ θ(C1,C f ) ⊕ θ(C f ,Cm) mod q.

Since θ is commutative and associative,

θ(C f ,Ce) ≡ p.θ(Cr, θ(C f ,C1)) ⊕ θ(C f ,C1) ⊕ θ(C f ,Cm) mod q

and if θ(C f ,C1) = 0 is substituted, then the final form of the equation is

θ(C f ,Cm) mod q. (3)

If ⟨ f ,m⟩ = t mod q then

θ(C f ,Cm) =


0

I

t
t
...
t

 ,
and so it follows from Equation (7.3) that the matrix Cm if it is added by the matrix Cm − θ(C f ,Cm). Thus,
the proof is completed. ⊠

Remark 7.3. As the value θ(C f ,Cm) is chosen great, so the security of the system is high.

Remark 7.4. If the sets {xi} and {yi} are chosen as super increasing sequences, then the vectors x and y transform to
a knapsack problem to find the matrix θ(C f ,Cm). Even though the secret key C f is obtained, the algebraic power of
the system is quitely high since it implies that the value θ(C f ,Cm) is researched by the knapsack method.

Remark 7.5. Since the product of two polynomials implies N2 operations in the NTRU rings and the operation θ
multiplies only N times on MC, the proposed system is also superior as speed.

Remark 7.6. Since there exist infinite solutions to line equations in Rn and q of these solutions which are integers
are in Zq, the private key numbers C f increase for q −→ ∞.

A different NTRU encryption algorithm and digital signature are introduced by means of the following
theorem.
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Theorem 7.7. The matrices S and S−1 can be found such that the sum of the matrices C f and C1 assimilates to
a companion matrix for the polynomials f , 1 ∈ Rq. That is, there exists a companion matrix C ∈ Zn×n such that
C f + C1 = SCS−1.

Since Theorem 7.2 can be proved by the basic linear algebra information, its proof is not included here.
The theorem is added to the NTRU system as follows.

Since the relevant companion matrices of the polynomials m1,m2 ∈ Rp can be written as Cm1 + Cm2 =
S.C.S−1, C f , C1 and Cr are constituted for f , 1, r ∈ Rq, and it is packaged and sent by a public key C−1

f .C1 and
a secret key C f by encrypting as

e ≡ p.C−1
f .C1.Cr + C−1

f .(S.C.S
−1) mod q.

Theorem 7.8. The messages m1 and m2 are probabilistically decrypted from an equation

e ≡ p.C−1
f .C1.Cr + C−1

f .(S.C.S
−1) mod q (4)

such that C f is invertible for two polynomials m1 and m2 in the ring Rp.

Proof. If Equation (7.4) is multiplied from left by C f , then it follows that

C f .e ≡ p.C1.Cr + (S.C.S−1) mod q.

Hence,
C f .e ≡ S.C.S−1 mod p

is obtained if it is calculated in mod p. Since S.C.S−1 = Ct1 + Ct2 is written for t1, t2 ∈ Zp, the receiver can
obtain that the correct probability is Cm1 + Cm2 . ⊠

Now, an another variation of Theorem 7.3 is presented as a digital signature.

Theorem 7.9. Let f ∈ Rq and C f be chosen such that it is commutative with S.C.S−1. A public key S−1.C f = Ch and
a encryption method

e ≡ p.Cr + S.C−1
f .S.C mod q

can be applied as a digital signature.

Proof. Let it be stated the existence of many f which are commutative with S.C.S−1. Since

A. f (A) = f (a).A

where f is any polynomial for an arbitrary matrix A ∈ Zn×n×, the existence of many f is exact.
If the result e is multiplied from right by h = S−1.C f , then

e.h ≡ p.Cr.S−1.C f + [S.C−1
f .S.C].S−1.C f mod q

is obtained. Since the matrix multiplication is associative and C f is commutative with S.C.S−1,

e.h ≡ p.Cr.S−1.C f + S.(C f .C−1
f ).(S.C.S−1) mod q

is reached. If it is calculated in mod p, then it follows

e.h ≡ S.(Cm1 + Cm2 ) mod p.

Thus, S is the message in the case that it is used as a secret key, and S can be used as a signature in the case
that the message is known. ⊠
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8. Conclusion and Recommendations

In this study, which aims to carry the NTRU cryptosystem on solid algebraic structures, some interesting
features and results are added to the cryptosystem. Taking advantage of the fact that matrices are larger
and more complex than a vector, more attention has been paid to security, which is the main purpose of
cryptology. But at the same time, since companion matrices are determined by a vector with a basic rule,
the new proposed system is also considered to be practical and useful. In the light of this study, new lattice
types can be determined and security analyzes can be made by arranging attacks on the new NTRU crypto
system.
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