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Abstract. The main purpose of the present paper is to study diagonal lift tensor fields of type (1,1) from
tangent bundle T(Mn) to semi-cotangent (pull-back) bundle (t∗(Mn), π2).

1. Lifts of Vector Fields on a Cross-Section in the Semi-Cotangent Bundle

Let Mn be an n-dimensional differentiable manifold of class C∞ and T (Mn) the tangent bundle determined
by a natural projection (submersion)π1 : T (Mn)→Mn. We use the notation (xi) = (xα, xα), where the indices
i, j, ... run from 1 to 2n, the indices α, β, ... from 1 to n and the indices α, β, ... from n+1 to 2n, xα are coordinates
in Mn, xα = yα are fibre coordinates of the tangent bundle T(Mn). If (xi′ ) = (xα

′

, xα′ ) is another system of
local adapted coordinates in the tangent bundle T(Mn), then we have xα

′

= ∂x
α′

∂xβ yβ,
xα′ = xα′

(
xβ

)
.

(1)

The Jacobian of (1) has components

(Ai′
j ) =

(
∂xi′

∂x j

)
=

 Aα′β Aα′βεy
ε

0 Aα′β

 ,
where Aα′β =

∂xα′

∂xβ , Aα′βε =
∂2xα′

∂xβ∂xε . Let T∗x(Mn)(x = π1(x̃), x̃ = (xα, xα) ∈ T (Mn)) be the cotangent space at a
point x of Mn. If pα are components of p ∈ T∗x(Mn) with respect to the natural coframe {dxα}, i.e. p = pi

dxi, then by definition the set t∗(Mn) of all points
(
xI
)
= (xα, xα, xα), xα = pα; I, J, ... = 1, ..., 3n with projection

π2 : t∗(Mn) → T(Mn) (i.e. π2 : (xα, xα, xα) → (xα, xα)) is a semi-cotangent (pull-back [11]) bundle of the
cotangent bundle by submersion π1 : T (Mn)→Mn (For definition of the pull-back bundle, see for example
[1], [3], [4], [5],[6],[10],[12]). It is remarkable fact that the semi-cotangent (pull-back) bundle has a degenerate
symplectic structure [11]

ω : (ωAB) = dp =


0 0 0
0 0 −δαβ
0 δ

β
α 0

 .
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It is clear that the pull-back bundle t∗(Mn) of the cotangent bundle T∗(Mn) also has the natural bundle
structure over Mn, its bundle projection π : t∗(Mn)→Mn being defined by π : (xα, xα, xα)→ (xα), and hence
π = π1 ◦ π2. Thus (t∗(Mn), π1 ◦ π2) is the composite bundle [[13], p.9] or step-like bundle [14].

We analyze some properties of diagonal lift of tensor fields of type (1,1) in semi-cotangent bundles with
the help of adapted frames.

We denote by ℑp
q(T(Mn)) and ℑp

q(Mn) the modules over F (T(Mn)) and F (Mn) of all tensor fields of type(
p, q

)
on T(Mn) and Mn respectively, where F (T(Mn)) and F (Mn) denote the rings of real-valued C∞−functions

on T(Mn) and Mn, respectively.
To a transformation (1) of local coordinates of T(Mn), there corresponds on t∗(Mn) the coordinate trans-

formation [8], [9]: 
xα
′

= ∂x
α′

∂xβ yβ,
xα′ = xα′

(
xβ

)
,

xα
′

= ∂xβ
∂xα′ pβ.

(2)

The Jacobian of (2) has components [8], [9]:

A : (AI′
J ) =


Aα′β Aα′βεy

ε 0
0 Aα′β 0

0 pσA
β′

β Aσβ′α′ Aβα′

 , (3)

where

Aα
′

βε =
∂2xα′

∂xβ∂xε
, Aαβ′α′ =

∂2xα

∂xβ′∂xα′
.

We denote by ℑp
q(T(Mn)) and ℑp

q(Mn) the modules over F (T(Mn)) and F (Mn) of all tensor fields of
type

(
p, q

)
on T(Mn) and Mn, respectively, where F (T(Mn)) and F (Mn) denote the rings of real-valued

C∞ −functions on T(Mn) and Mn, respectively.
Let θ be a covector field on T(Mn). Then the transformation p→ θp, θp being the value of θ at p ∈ T(Mn),

determines a cross-section βθ of semi-cotangent bundle. Thus if σ : Mn → T∗(Mn) is a cross-section of(
T∗(Mn), π̃,Mn

)
, such that π̃ ◦ σ = I(Mn), an associated cross-section βθ : T(Mn) → t∗(Mn) of semi-cotangent

(pull-back) bundle (t∗(Mn), π2,T(Mn)) of cotangent bundle by using projection (submersion) of the tangent
bundle T(Mn) defined by [[2], p. 217-218], [[7], p. 301]:

βθ
(
xα, xα

)
=

(
xα, xα, σ ◦ π1

(
xα, xα

))
=

(
xα, xα, σ (xα)

)
=

(
xα, xα, θα

(
xβ

))
.

If the covector field θ has the local components θα
(
xβ

)
, the cross-section βθ (T(Mn)) of t∗(Mn) is locally

expressed by

xα = yα = Vα
(
xβ

)
, xα = xα, xα = pα = θα

(
xβ

)
(4)

with respect to the coordinates xA = (xα, xα, xα) in t∗(Mn). xα = yα being considered as parameters. Differ-
entiating (4) by xα = yα, we have vector fields B(β) (β = 1, ...,n) with components

B(β) =
∂xA

∂xβ
= ∂βx

A =


∂βV

α

∂βx
α

∂βθα

 ,
which are tangent to the cross-section βθ (T(Mn)) [8], [9].

Thus B(β) have components

B(β) :
(
BA

(β)

)
=


δα
β

0
0
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with respect to the coordinates (xα, xα, xα) in t∗(Mn), where

δα
β
= Aα

β
=
∂xα

∂xβ
.

Let X ∈ ℑ1
0 (T(Mn)), i.e. X = Xα∂α. We denote by BX the vector field with local components

BX :
(
BA

(β)Xβ
)
=


δα
β
Xβ

0
0

 =


Aα
β
Xβ

0
0

 =
 Xα

0
0

 (5)

with respect to the coordinates (xα, xα, xα) in t∗(Mn), which is defined globally along βθ (T(Mn)). Then a
mapping

B : ℑ1
0(T(Mn))→ ℑ1

0(βθ (T(Mn)))

is defined by (5). The mapping B is the differential of βθ : T(Mn) → t∗(Mn) and so an isomorphism of
ℑ

1
0(T(Mn)) onto ℑ1

0(βθ (T(Mn))) [8], [9].

Since a cross-section is locally expressed by xα = yα = const., xα = pα = const., xα = xα, xα being
considered as parameters. Differentiating (4) by xα, we have vector fields C(β) (β = n + 1, ..., 2n) with
components

C(β) =
∂xA

∂xβ
= ∂βxA =

 ∂βV
α

∂βxα

∂βθα

 ,
which are tangent to the cross-section βθ (T(Mn)).

Thus C(β) have components

C(β) :
(
CA

(β)

)
=


∂βVα

δαβ
∂βθα


with respect to the coordinates (xα, xα, xα) in t∗(Mn), where

δαβ = Aαβ =
∂xα

∂xβ
.

Let X ∈ ℑ1
0 (T(Mn)). Then we denote by CX the vector field with local components

CX :
(
CA

(β)Xβ
)
=

 Xβ∂βVα

Xα

Xβ∂βθα

 (6)

with respect to the coordinates (xα, xα, xα) in t∗(Mn), which is defined globally along βθ (T(Mn)). Then a
mapping

C : ℑ1
0(T(Mn))→ ℑ1

0(βθ (T(Mn)))

is defined by (6). The mapping C is the differential of βθ : T(Mn) → t∗(Mn) and so an isomorphism of
ℑ

1
0(T(Mn)) onto ℑ1

0(βθ (T(Mn))) [8], [9].
Now, consider ω ∈ ℑ0

1(Mn) and vector field X ∈ ℑ1
0 (T(Mn)), then

vv
ω (vertical lift), ccX (complete lift)

and HHX (horizontal lift) have respectively, components on the semi-cotangent bundle t∗(Mn) [8], [9]:

vv
ω :

 0
0
ωα

 , ccX :

 yε∂εXα

Xα

−pσ(∂αXσ)

 , HHX :


−ΓαβX

β

Xα

XβΓβα

 (7)
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with respect to the coordinates (xα, xα, xα),where

Γαβ = VεΓαε β, Γβα = θεΓ
ε
βα.

On the other hand, the fibre is locally represented by

xα = yα = const., xα = const., xα = pα = pα,

pα being considered as parameters. Thus, on differentiating with respect to pα, we easily see that the vector

fields E(
β
) =vv

(
dxβ

)
(β = 2n + 1, ..., 3n) with components

E(
β
) :

EA(
β
)
 = ∂(β)xA =


∂
β
yα

∂
β
xα

∂
β
pα

 =


0
0
δ
β
α


is tangent to the fibre, where

δ
β
α = Aβα =

∂xβ

∂xα
.

Letωbe an 1-form with local componentsωα on Mn, so thatω is a 1-form with local expressionω = ωαdxα.
We denote by Eω the vector field with local components

Eω :

EA(
β
)ωβ

 =
 0

0
ωα

 , (8)

which is tangent to the fibre. Then a mapping

E : ℑ0
1(Mn)→ ℑ1

0(t∗(Mn))

is defined by (8) and so an isomorphism of ℑ0
1(Mn) in to ℑ1

0(t∗(Mn)) [8], [9].
We consider in π−1 (U) 3n local vector fields B(β), C(β) and E(

β
) along βθ (T(Mn)), which are respectively

represented by

B(β) = B
∂

∂xβ
, C(β) = C

∂

∂xβ
, E(

β
) = Edxβ.

Theorem 1.1. Let X be a vector field on T(Mn). We have along βθ (T(Mn)) the formula

ccX = CX + B (LVX) + E ( −LXθ) ,

where LVX denotes the Lie derivative of X with respect to V, and LXθ denotes the Lie derivative of θ with respect to
X [8], [9].

On the other hand, on putting C(
β
) = E(

β
), we write the adapted frame of βθ (T(Mn)) as

{
B(β),C(β),C

(
β
)}.

The adapted frame
{

B(β),C(β),C
(
β
)} of βθ (T(Mn)) is given by the matrix

Ã =
(
ÃA

B

)
=


δαβ ∂βVα 0
0 δαβ 0

0 ∂βθα δ
β
α

 . (9)
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Since the matrix Ã in (9) is non-singular, it has the inverse. Denoting this inverse by
(
Ã
)−1

, we have

(
Ã
)−1
=

(
ÃB

C

)−1
=


δ
β
θ −∂θVβ 0

0 δ
β
θ 0

0 −∂θθβ δθβ

 , (10)

where Ã
(
Ã
)−1
= (ÃA

B )
(
ÃB

C

)−1
= δA

C = Ĩ, where A =
(
α, α, α

)
, B =

(
β, β, β

)
, C =

(
θ, θ, θ

)
.

Then we see from Theorem 1.1 that the complete lift ccX of a vector field X ∈ ℑ1
0(T(Mn)) has along

βθ (T(Mn)) components of the form

ccX :

 LVXα

Xα

−LXθα


with respect to the adapted frame

{
B(β),C(β),C

(
β
)} [8], [9].

Theorem 1.2. The complete lift ccX of a vector field X in Mn to t∗(Mn) is tangent to the cross-section βθ (T(Mn))
determined by a 1 − form θ and vector field V in Mn if and only if

LXθ = 0,LVX = 0,

where LVX denotes the Lie derivative of X with respect to V, and LXθ denotes the Lie derivative of θwith respect to X.

BX, CX and Eω also have components:

BX :

 Xα

0
0

 , CX :

 0
Xα

0

 , Eω :

 0
0
ωα

 (11)

respectively, with respect to the adapted frame
{

B(β),C(β),C
(
β
)} of the cross-section βθ (T(Mn)) determined

by a 1-form θ on T(Mn) [8], [9].

2. Complete Lift of Tensor Fields of Type (1,1) on a Cross-Section in Semi-Cotangent Bundle

Suppose now that F ∈ ℑ1
1(T(Mn)) and F has local components Fαβ in a neighborhood U of Mn, F =

Fαβ∂α ⊗ dxβ. Then the semi-cotangent (pull-back) bundle t∗(Mn) of cotangent bundle T∗(Mn) by using
projection of the tangent bundle T(Mn) admits the complete lift ccF of F with components [8], [9]:

ccF : (
cc

FI
J) =


Fαβ yε∂εFαβ 0
0 Fαβ 0

0 pσ(∂βFσα − ∂αFσβ) Fβα

 , (12)

with respect to the coordinates (xα, xα, xα) on t∗(Mn). Then ccF has components FA
B given by

ccF = (
cc

FA
B ) =


Fαβ LVFαβ 0
0 Fαβ 0

0 φFθ Fβα

 (13)
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with respect to the adapted frame
{

B(β),C(β),C
(
β
)} of the cross-section βθ (T(Mn)) determined by a 1-form

θ in T(Mn), where A =
(
α, α, α

)
, B =

(
β, β, β

)
[8], [9]. Also, the component

cc Fαβ of
cc FA

B is defined as Tachibana

operator ϕFθ of F, i.e.,
cc

Fαβ = ϕFθ = (∂βFσα − ∂αF
σ
β)θσ − Fγβ∂γθα + Fγα∂βθγ,

and LVFαβ denotes the Lie derivative of Fαβ with respect to V, i.e.,

LVFαβ = Vγ∂γFαβ + Fαγ∂βV
γ
− Fγβ∂γV

α.

3. Adapted Frames and Diagonal Lifts of Affinor Fields

Let ∇ be a symmetric affine connection in Mn. In each coordinate neighborhood {U, xα} of Mn, we put

X(α) =
∂
∂xα
, θ(α) = dxα.

Then 3n local vector fields Y(α), HHX(α) and vvθ(α) have respectively components of the form

Y(α) :

 δ
β
α

0
0

 , HHX(α) :


−Γαβ
δ
β
α

Γβα

 , vvθ(α) :


0
0
δαβ

 (14)

with respect to the induced coordinates (xα, xα, xα) in π−1 (U), where we have used (7). We call the set{
Y(α),HH X(α),vv θ(α)

}
the frame adapted to the symmetric affine connection ∇ in π−1 (U). On putting

ê(α) = Y(α), ê(α) =
HH X(α), ê(

α
) =vv θ(α) (15)

we write the adapted frame as {̂
e(B)

}
=

{̂
e(α), ê(α), ê(α)

}
. (16)

The adapted frame
{̂
e(B)

}
=

{̂
e(α), ê(α), ê(α)

}
is given by the matrix

Â :
(
ÂA

B

)
=


δαβ −Γαβ 0
0 δαβ 0

0 Γβα δ
β
α

 . (17)

Since the matrix Â in (17) is non-singular, it has the inverse. Denoting this inverse by
(
Â
)−1

, we have

(
Â
)−1

:
(
ÂB

C

)−1
=


δ
β
θ Γ

β
θ 0

0 δ
β
θ 0

0 −Γθβ δθβ

 , (18)

where Â
(
Â
)−1
= (ÂA

B )
(
ÂB

C

)−1
= δA

C = Ĩ, where A =
(
α, α, α

)
, B =

(
β, β, β

)
, C =

(
θ, θ, θ

)
.

If we take account of (16), we see that the diagonal lift
DD F of F ∈ ℑ1

1(T(Mn)) has components [8], [9]:

DD
F : (

DD
FI

J) =


−Fαβ −ΓαεFεβ − Γ

ε
βF
α
ε 0

0 Fαβ 0

0 ΓβσFσα + ΓασFσβ −Fβα

 , (19)
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with respect to the coordinates (xα, xα, xα) on t∗(Mn),where

Γαε = yγΓαγε, Γασ = pγΓ
γ
ασ.

which proves (19).

We now see, from (16), that the diagonal lift
DD F of F ∈ ℑ1

1(T(Mn)) has components of the form

DD
F : (

DD
FA

B ) =


−Fαβ 0 0

0 Fαβ 0

0 0 −Fβα


with respect to the adapted frame

{̂
e(B)

}
in t∗(Mn).

We now obtain from (19) that the diagonal lift
DD F of an affinor field F ∈ ℑ1

1(T(Mn)) has along βθ (T(Mn))
components of the form [8], [9]:

DD
F :


−Fαβ − (∇εVα) Fεβ −

(
∇βVε

)
Fαε 0

0 Fαβ 0

0 −

(
∇βθσ

)
Fσα − (∇αθσ) Fσβ −Fβα

 , (20)

with respect to the adapted frame
{

B(β),C(β),C
(
β
)}.

Then we see from (7) that the horizontal lift HHX of a vector field X ∈ ℑ1
0 (T(Mn)) has along βθ (T(Mn))

components of the form

HHX :


−Xβ

(
∇βVα

)
Xα

−

(
∇βθα

)
Xβ

 (21)

with respect to the adapted frame
{

B(β),C(β),C
(
β
)} [8], [9].

Using (7), (20) and (21), we have along βθ (T(Mn)):

Theorem 3.1. If F and X are affinor and vector fields on T(Mn), and ω ∈ ℑ0
1(Mn), then with respect to a symetric

affine connection ∇ in Mn, we have [8], [9]:

(i) DDF
(

HHX
)
=HH (FX) ,

(ii) DDF (vvω) = −vv (ω ◦ F) .

Theorem 3.2. If F,G ∈ ℑ1
1(Mn), then with respect to a symetric affine connection ∇ in Mn, we have [9]:

DDFDDG +DD GDDF = HH (FG + GF) .

Theorem 3.3. If F,G ∈ ℑ1
1(Mn), then with respect to a symetric affine connection ∇ in Mn, we have [9]:

DDFHHG +DD GHHF =HH FDDG +HH GDDF = DD (FG + GF) .

Putting F = G in Theorem 3.2 and Theorem 3.3, we have

HHFDDF = DDFHHF =DD (F2)
(DDF)2p = HH(F2p), (DDF)2p+1 =DD (F2p+1), (p = 1, 2, ...)

for any F ∈ ℑ1
1(T(Mn)).
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Theorem 3.4. The diagonal lift Ĵ of the identity tensor field I of type (1, 1) has the components [9]:

Ĵ :


−δαβ 2Γαβ 0

0 δαβ 0

0 2Γβα −δ
β
α

 . (22)

From Theorem 3.4, we have

Theorem 3.5. The diagonal lift Ĵ of the identity tensor filed I of type (1, 1) satisfies Ĵ2 = I.

Proof. In fact, from (22), we easily see that

Ĵ2 = Ĵ
(̂
J
)
= (̂JA

B )
(̂
JB
C

)
=


−δαβ 2Γαβ 0

0 δαβ 0

0 2Γβα −δ
β
α



−δ
β
θ 2Γβθ 0

0 δ
β
θ 0

0 2Γθβ −δθβ


=

 δ
α
θ 2Γαθ − 2Γαθ 0

0 δαθ 0
0 2Γθα − 2Γθα δθα


=

 δ
α
θ 0 0

0 δαθ 0
0 0 δθα


= δA

C

= Î.

Theorem 3.6. The lifts HHX of X ∈ ℑ1
0(T(Mn)) and vvω of ω ∈ ℑ0

1(Mn) have respectively components

(i) HHX :

 0
Xα

0

 , (ii) vvω :

 0
0
ωα


with respect to the adapted frame

{̂
e(B)

}
=

{̂
e(α), ê(α), ê(α)

}
, Xα and ωα being local components of X and ω

respectively.

Proof. (i) If X ∈ ℑ1
0(T(Mn)), from (7) and from (17), then we have

ÂHHX =


δαβ −Γαβ 0
0 δαβ 0

0 Γβα δ
β
α


 −Γ

β
θX
θ

Xβ

XθΓβθ


=

 0
Xα

0

 .
(ii) If ω ∈ ℑ0

1(Mn), from (7) and from (17), then we have
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Âvvω =


δαβ −Γαβ 0
0 δαβ 0

0 Γβα δ
β
α


 0

0
ωβ


=

 0
0
ωα

 .

Using Theorem 3.1, we have

Theorem 3.7. F,G ∈ ℑ1
1(Mn), then [

DDF,DD G
]
=DD [F,G] .

Proof. If X is an arbitrary vector field in T(Mn), then

[
DDF,DD G

]HH
X = DDFDDGHHX −DD GDDFHHX

= DDFHH (GX) −DD GHH (FX)
= HH(FGX − GFX)
= HH([F,G] X)
= DD [F,G]HH X

by virtue of Theorem 3.1. Thus we have
[

DDF,DD G
]
=DD [F,G].
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