Some Notes on Diagonal Lifts in the Semi-Cotangent Bundle

Furkan YILDIRIM^a, Hacer CENGİZ^b

^aNarman Vocational Training School, Ataturk University, 25530, Erzurum, Turkey ^bDepartment of Mathematics, Faculty of Sci. Ataturk University, 25240, Erzurum, Turkey

Abstract. The main purpose of the present paper is to study diagonal lift tensor fields of type (1,1) from tangent bundle $T(M_n)$ to semi-cotangent (pull-back) bundle ($t^*(M_n), \pi_2$).

1. Lifts of Vector Fields on a Cross-Section in the Semi-Cotangent Bundle

Let M_n be an *n*-dimensional differentiable manifold of class C^{∞} and $T(M_n)$ the tangent bundle determined by a natural projection (submersion) $\pi_1 : T(M_n) \to M_n$. We use the notation $(x^i) = (x^{\overline{\alpha}}, x^{\alpha})$, where the indices *i*, *j*, ... run from 1 to 2*n*, the indices $\alpha, \beta, ...$ from 1 to *n* and the indices $\overline{\alpha}, \overline{\beta}, ...$ from n + 1 to 2*n*, x^{α} are coordinates in $M_n, x^{\overline{\alpha}} = y^{\alpha}$ are fibre coordinates of the tangent bundle $T(M_n)$. If $(x^{i'}) = (x^{\overline{\alpha'}}, x^{\alpha'})$ is another system of local adapted coordinates in the tangent bundle $T(M_n)$, then we have

$$\begin{aligned}
x^{\overline{\alpha'}} &= \frac{\partial x^{\alpha'}}{\partial x^{\beta}} y^{\beta}, \\
x^{\alpha'} &= x^{\alpha'} \left(x^{\beta} \right).
\end{aligned}$$
(1)

The Jacobian of (1) has components

$$(A_j^{i'}) = \left(\frac{\partial x^{i'}}{\partial x^j}\right) = \left(\begin{array}{cc} A_{\beta}^{\alpha'} & A_{\beta\varepsilon}^{\alpha'} y^{\varepsilon} \\ 0 & A_{\beta}^{\alpha'} \end{array}\right),$$

where $A_{\beta}^{\alpha'} = \frac{\partial x^{\alpha'}}{\partial x^{\beta}}$, $A_{\beta\varepsilon}^{\alpha'} = \frac{\partial^2 x^{\alpha'}}{\partial x^{\beta} \partial x^{\varepsilon}}$. Let $T_x^*(M_n)(x = \pi_1(\tilde{x}), \tilde{x} = (x^{\overline{\alpha}}, x^{\alpha}) \in T(M_n))$ be the cotangent space at a point x of M_n . If p_{α} are components of $p \in T_x^*(M_n)$ with respect to the natural coframe $\{dx^{\alpha}\}$, i.e. $p = p_i$ dx^i , then by definition the set $t^*(M_n)$ of all points $(x^I) = (x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\alpha}}), x^{\overline{\alpha}} = p_{\alpha}; I, J, ... = 1, ..., 3n$ with projection $\pi_2 : t^*(M_n) \to T(M_n)$ (i.e. $\pi_2 : (x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\alpha}}) \to (x^{\overline{\alpha}}, x^{\alpha}))$ is a semi-cotangent (pull-back [11]) bundle of the cotangent bundle by submersion $\pi_1 : T(M_n) \to M_n$ (For definition of the pull-back bundle, see for example [1], [3], [4], [5], [6], [10], [12]). It is remarkable fact that the semi-cotangent (pull-back) bundle has a degenerate symplectic structure [11]

$$\omega:(\omega_{AB})=dp=\left(\begin{array}{ccc} 0&0&0\\ 0&0&-\delta^{\alpha}_{\beta}\\ 0&\delta^{\beta}_{\alpha}&0\end{array}\right).$$

Corresponding author: FY mail address: furkan.yildirim@atauni.edu.tr ORCID:0000-0003-0081-7857, HC ORCID:0000-0002-9350-2397

Received: 5 November 2024; Accepted: 21 December 2024; Published: 31 December 2024.

Keywords. Vector field, diagonal lift, horizontal lift, pull-back bundle, cross-section, semi-cotangent bundle.

²⁰¹⁰ Mathematics Subject Classification. 53A45, 53C55, 55R10.

Cited this article as: Yıldırım, F. & Cengiz, H. (2024). Some Notes on Diagonal Lifts in the Semi-Cotangent Bundle. Turkish Journal of Science, 9(3), 216–224.

It is clear that the pull-back bundle $t^*(M_n)$ of the cotangent bundle $T^*(M_n)$ also has the natural bundle structure over M_n , its bundle projection $\pi : t^*(M_n) \to M_n$ being defined by $\pi : (x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}}) \to (x^{\alpha})$, and hence $\pi = \pi_1 \circ \pi_2$. Thus $(t^*(M_n), \pi_1 \circ \pi_2)$ is the composite bundle [[13], p.9] or step-like bundle [14].

We analyze some properties of diagonal lift of tensor fields of type (1,1) in semi-cotangent bundles with the help of adapted frames.

We denote by $\mathfrak{I}_q^p(T(M_n))$ and $\mathfrak{I}_q^p(M_n)$ the modules over $F(T(M_n))$ and $F(M_n)$ of all tensor fields of type (p,q) on $T(M_n)$ and M_n respectively, where $F(T(M_n))$ and $F(M_n)$ denote the rings of real-valued C^{∞} –functions on $T(M_n)$ and M_n , respectively.

To a transformation (1) of local coordinates of $T(M_n)$, there corresponds on $t^*(M_n)$ the coordinate transformation [8], [9]:

$$\begin{pmatrix} x^{\overline{\alpha}'} = \frac{\partial x^{\alpha'}}{\partial x^{\beta}} y^{\beta}, \\ x^{\alpha'} = x^{\alpha'} \begin{pmatrix} x^{\beta} \end{pmatrix}, \\ x^{\overline{\alpha}'} = \frac{\partial x^{\beta}}{\partial x^{\alpha'}} p_{\beta}.
\end{cases}$$
(2)

The Jacobian of (2) has components [8], [9]:

$$\overline{A}: (A_J^{I'}) = \begin{pmatrix} A_{\beta}^{\alpha'} & A_{\beta\varepsilon}^{\alpha'} y^{\varepsilon} & 0\\ 0 & A_{\beta}^{\alpha'} & 0\\ 0 & p_{\sigma} A_{\beta}^{\beta'} A_{\beta'\alpha'}^{\sigma} & A_{\alpha'}^{\beta} \end{pmatrix},$$
(3)

where

$$A^{\alpha'}_{\beta\varepsilon} = \frac{\partial^2 x^{\alpha'}}{\partial x^{\beta} \partial x^{\varepsilon}}, \quad A^{\alpha}_{\beta'\alpha'} = \frac{\partial^2 x^{\alpha}}{\partial x^{\beta'} \partial x^{\alpha'}}$$

We denote by $\mathfrak{I}_q^p(T(M_n))$ and $\mathfrak{I}_q^p(M_n)$ the modules over $F(T(M_n))$ and $F(M_n)$ of all tensor fields of type (p,q) on $T(M_n)$ and M_n , respectively, where $F(T(M_n))$ and $F(M_n)$ denote the rings of real-valued C° –functions on $T(M_n)$ and M_n , respectively.

Let θ be a covector field on $T(M_n)$. Then the transformation $p \to \theta_p$, θ_p being the value of θ at $p \in T(M_n)$, determines a cross-section β_{θ} of semi-cotangent bundle. Thus if $\sigma : M_n \to T^*(M_n)$ is a cross-section of $(T^*(M_n), \tilde{\pi}, M_n)$, such that $\tilde{\pi} \circ \sigma = I_{(M_n)}$, an associated cross-section $\beta_{\theta} : T(M_n) \to t^*(M_n)$ of semi-cotangent (pull-back) bundle $(t^*(M_n), \pi_2, T(M_n))$ of cotangent bundle by using projection (submersion) of the tangent bundle $T(M_n)$ defined by [[2], p. 217-218], [[7], p. 301]:

$$\beta_{\theta}\left(x^{\overline{\alpha}}, x^{\alpha}\right) = \left(x^{\overline{\alpha}}, x^{\alpha}, \sigma \circ \pi_{1}\left(x^{\overline{\alpha}}, x^{\alpha}\right)\right) = \left(x^{\overline{\alpha}}, x^{\alpha}, \sigma\left(x^{\alpha}\right)\right) = \left(x^{\overline{\alpha}}, x^{\alpha}, \theta_{\alpha}\left(x^{\beta}\right)\right)$$

If the covector field θ has the local components $\theta_{\alpha}(x^{\beta})$, the cross-section $\beta_{\theta}(T(M_n))$ of $t^*(M_n)$ is locally expressed by

$$x^{\overline{\alpha}} = y^{\alpha} = V^{\alpha} \left(x^{\beta} \right), \quad x^{\alpha} = x^{\alpha}, \quad x^{\overline{\overline{\alpha}}} = p_{\alpha} = \theta_{\alpha} \left(x^{\beta} \right)$$
(4)

with respect to the coordinates $x^{A} = (x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\alpha}})$ in $t^{*}(M_{n})$. $x^{\overline{\alpha}} = y^{\alpha}$ being considered as parameters. Differentiating (4) by $x^{\overline{\alpha}} = y^{\alpha}$, we have vector fields $B_{(\overline{\beta})}$ ($\overline{\beta} = 1, ..., n$) with components

$$B_{(\overline{\beta})} = \frac{\partial x^{A}}{\partial x^{\overline{\beta}}} = \partial_{\overline{\beta}} x^{A} = \begin{pmatrix} \partial_{\overline{\beta}} V^{\alpha} \\ \partial_{\overline{\beta}} x^{\alpha} \\ \partial_{\overline{\beta}} \theta_{\alpha} \end{pmatrix},$$

which are tangent to the cross-section β_{θ} (*T*(*M_n*)) [8], [9].

Thus $B_{(\overline{\beta})}$ have components

$$B_{\left(\overline{\beta}\right)}:\left(B_{\left(\overline{\beta}\right)}^{A}\right)=\left(\begin{array}{c}\delta_{\overline{\beta}}^{\alpha}\\0\\0\end{array}\right)$$

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ in $t^*(M_n)$, where

$$\delta^{\alpha}_{\overline{\beta}} = A^{\alpha}_{\overline{\beta}} = \frac{\partial x^{\alpha}}{\partial x^{\overline{\beta}}}$$

Let $X \in \mathfrak{I}_{0}^{1}(T(M_{n}))$, i.e. $X = X^{\alpha}\partial_{\alpha}$. We denote by *BX* the vector field with local components

$$BX: \left(B^{A}_{(\overline{\beta})}X^{\overline{\beta}}\right) = \left(\begin{array}{c} \frac{\delta^{\alpha}_{\overline{\beta}}X^{\overline{\beta}}}{0} \\ 0 \\ 0\end{array}\right) = \left(\begin{array}{c} A^{\alpha}_{\overline{\beta}}X^{\overline{\beta}} \\ 0 \\ 0\end{array}\right) = \left(\begin{array}{c} X^{\alpha} \\ 0 \\ 0\end{array}\right)$$
(5)

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ in $t^*(M_n)$, which is defined globally along $\beta_{\theta}(T(M_n))$. Then a mapping

$$B:\mathfrak{I}_0^1(T(M_n))\to\mathfrak{I}_0^1(\beta_\theta\left(T(M_n)\right))$$

is defined by (5). The mapping *B* is the differential of β_{θ} : $T(M_n) \rightarrow t^*(M_n)$ and so an isomorphism of $\mathfrak{I}_0^1(T(M_n))$ onto $\mathfrak{I}_0^1(\beta_{\theta}(T(M_n)))$ [8], [9].

Since a cross-section is locally expressed by $x^{\overline{\alpha}} = y^{\alpha} = const.$, $x^{\overline{\alpha}} = p_{\alpha} = const.$, $x^{\alpha} = x^{\alpha}$, x^{α} being considered as parameters. Differentiating (4) by x^{α} , we have vector fields $C_{(\beta)}$ ($\beta = n + 1, ..., 2n$) with components

$$C_{(\beta)} = \frac{\partial x^{A}}{\partial x^{\beta}} = \partial_{\beta} x^{A} = \begin{pmatrix} \partial_{\beta} V^{\alpha} \\ \partial_{\beta} x^{\alpha} \\ \partial_{\beta} \theta_{\alpha} \end{pmatrix},$$

which are tangent to the cross-section β_{θ} ($T(M_n)$).

Thus $C_{(\beta)}$ have components

$$C_{(\beta)}: \left(C^{A}_{(\beta)}\right) = \left(\begin{array}{c} \partial_{\beta}V^{\alpha} \\ \delta^{\alpha}_{\beta} \\ \partial_{\beta}\theta_{\alpha} \end{array}\right)$$

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ in $t^*(M_n)$, where

$$\delta^{\alpha}_{\beta} = A^{\alpha}_{\beta} = \frac{\partial x^{\alpha}}{\partial x^{\beta}}$$

Let $X \in \mathfrak{I}_0^1(T(M_n))$. Then we denote by CX the vector field with local components

$$CX: \left(C^{A}_{(\beta)}X^{\beta}\right) = \left(\begin{array}{c}X^{\beta}\partial_{\beta}V^{\alpha}\\X^{\alpha}\\X^{\beta}\partial_{\beta}\theta_{\alpha}\end{array}\right)$$
(6)

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\alpha}})$ in $t^*(M_n)$, which is defined globally along $\beta_{\theta}(T(M_n))$. Then a mapping

$$C:\mathfrak{I}_0^1(T(M_n))\to\mathfrak{I}_0^1(\beta_\theta\left(T(M_n)\right))$$

is defined by (6). The mapping *C* is the differential of β_{θ} : $T(M_n) \rightarrow t^*(M_n)$ and so an isomorphism of $\mathfrak{I}^1_0(T(M_n))$ onto $\mathfrak{I}^1_0(\beta_{\theta}(T(M_n)))$ [8], [9].

Now, consider $\omega \in \mathfrak{I}_1^0(M_n)$ and vector field $X \in \mathfrak{I}_0^1(T(M_n))$, then ^{*vv*} ω (vertical lift), ^{*cv*}X (complete lift) and ^{*HH*}X (horizontal lift) have respectively, components on the semi-cotangent bundle $t^*(M_n)$ [8], [9]:

$${}^{v}\omega: \begin{pmatrix} 0\\0\\\omega_{\alpha} \end{pmatrix}, {}^{cc}X: \begin{pmatrix} y^{\varepsilon}\partial_{\varepsilon}X^{\alpha}\\X^{\alpha}\\-p_{\sigma}(\partial_{\alpha}X^{\sigma}) \end{pmatrix}, {}^{HH}X: \begin{pmatrix} -\Gamma_{\beta}^{\alpha}X^{\beta}\\X^{\alpha}\\X^{\beta}\Gamma_{\beta\alpha} \end{pmatrix}$$
(7)

219

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$, where

$$\Gamma^{\alpha}_{\beta} = V^{\varepsilon} \Gamma^{\alpha}_{\varepsilon\beta}, \quad \Gamma_{\beta\alpha} = \theta_{\varepsilon} \Gamma^{\varepsilon}_{\beta\alpha}$$

On the other hand, the fibre is locally represented by

$$x^{\overline{\alpha}} = y^{\alpha} = const., \quad x^{\alpha} = const., \quad x^{\overline{\alpha}} = p_{\alpha} = p_{\alpha},$$

 p_{α} being considered as parameters. Thus, on differentiating with respect to p_{α} , we easily see that the vector fields $E_{(\overline{\beta})} = vv \left(dx^{\beta} \right) (\overline{\beta} = 2n + 1, ..., 3n)$ with components

$$E_{\left(\overline{\beta}\right)}:\left(E^{A}_{\left(\overline{\beta}\right)}\right)=\partial_{\left(\overline{\beta}\right)}x^{A}=\left(\begin{array}{c}\partial_{\overline{\beta}}y^{\alpha}\\\partial_{\overline{\beta}}x^{\alpha}\\\partial_{\overline{\beta}}p_{\alpha}\end{array}\right)=\left(\begin{array}{c}0\\0\\\delta_{\alpha}^{\beta}\end{array}\right)$$

is tangent to the fibre, where

$$\delta^{\beta}_{\alpha} = A^{\beta}_{\alpha} = \frac{\partial x^{\beta}}{\partial x^{\alpha}}.$$

Let ω be an 1-form with local components ω_{α} on M_n , so that ω is a 1-form with local expression $\omega = \omega_{\alpha} dx^{\alpha}$. We denote by $E\omega$ the vector field with local components

$$E\omega: \left(E^{A}_{\left(\overline{\beta}\right)}\omega_{\beta}\right) = \left(\begin{array}{c}0\\0\\\omega_{\alpha}\end{array}\right),\tag{8}$$

which is tangent to the fibre. Then a mapping

$$E:\mathfrak{I}_1^0(M_n)\to\mathfrak{I}_0^1(t^*(M_n))$$

is defined by (8) and so an isomorphism of $\mathfrak{I}_1^0(M_n)$ in to $\mathfrak{I}_0^1(t^*(M_n))$ [8], [9].

We consider in $\pi^{-1}(U) = 3n$ local vector fields $B_{(\overline{\beta})}, C_{(\beta)}$ and $E_{(\overline{\beta})}$ along $\beta_{\theta}(T(M_n))$, which are respectively represented by

$$B_{(\overline{\beta})} = B \frac{\partial}{\partial x^{\overline{\beta}}}, \quad C_{(\beta)} = C \frac{\partial}{\partial x^{\beta}}, \quad E_{(\overline{\beta})} = E dx^{\beta}$$

Theorem 1.1. Let X be a vector field on $T(M_n)$. We have along $\beta_{\theta}(T(M_n))$ the formula

$$^{cc}X = CX + B(L_VX) + E(-L_X\theta),$$

where $L_V X$ denotes the Lie derivative of X with respect to V, and $L_X \theta$ denotes the Lie derivative of θ with respect to X [8], [9].

On the other hand, on putting $C_{(\overline{\beta})} = E_{(\overline{\beta})}$, we write the adapted frame of $\beta_{\theta} (T(M_n))$ as $\left\{B_{(\overline{\beta})}, C_{(\beta)}, C_{(\overline{\beta})}\right\}$. The adapted frame $\left\{B_{(\overline{\beta})}, C_{(\beta)}, C_{(\overline{\beta})}\right\}$ of $\beta_{\theta} (T(M_n))$ is given by the matrix

$$\widetilde{A} = \left(\widetilde{A}_{B}^{A}\right) = \begin{pmatrix} \delta_{\beta}^{\alpha} & \partial_{\beta}V^{\alpha} & 0\\ 0 & \delta_{\beta}^{\alpha} & 0\\ 0 & \partial_{\beta}\theta_{\alpha} & \delta_{\alpha}^{\beta} \end{pmatrix}.$$
(9)

Since the matrix \widetilde{A} in (9) is non-singular, it has the inverse. Denoting this inverse by $(\widetilde{A})^{-1}$, we have

$$\left(\widetilde{A}\right)^{-1} = \left(\widetilde{A}_{C}^{B}\right)^{-1} = \begin{pmatrix} \delta_{\theta}^{\beta} & -\partial_{\theta}V^{\beta} & 0\\ 0 & \delta_{\theta}^{\beta} & 0\\ 0 & -\partial_{\theta}\theta_{\beta} & \delta_{\beta}^{\theta} \end{pmatrix},$$
(10)

where $\widetilde{A}(\widetilde{A})^{-1} = (\widetilde{A}_B^A)(\widetilde{A}_C^B)^{-1} = \delta_C^A = \widetilde{I}$, where $A = (\overline{\alpha}, \alpha, \overline{\overline{\alpha}}), B = (\overline{\beta}, \beta, \overline{\overline{\beta}}), C = (\overline{\theta}, \theta, \overline{\overline{\theta}}).$

Then we see from Theorem 1.1 that the complete lift ${}^{cc}X$ of a vector field $X \in \mathfrak{T}_0^1(T(M_n))$ has along $\beta_{\theta}(T(M_n))$ components of the form

$${}^{x}X:\left(\begin{array}{c}L_{V}X^{\alpha}\\X^{\alpha}\\-L_{X}\theta_{\alpha}\end{array}\right)$$

with respect to the adapted frame $\left\{B_{(\overline{\beta})}, C_{(\beta)}, C_{(\overline{\beta})}\right\}$ [8], [9].

Theorem 1.2. The complete lift ${}^{cc}X$ of a vector field X in M_n to $t^*(M_n)$ is tangent to the cross-section $\beta_{\theta}(T(M_n))$ determined by a $1 - form \theta$ and vector field V in M_n if and only if

$$L_X \theta = 0, L_V X = 0,$$

where $L_V X$ denotes the Lie derivative of X with respect to V, and $L_X \theta$ denotes the Lie derivative of θ with respect to X.

BX, *CX* and *E* ω also have components:

$$BX: \begin{pmatrix} X^{\alpha} \\ 0 \\ 0 \end{pmatrix}, \quad CX: \begin{pmatrix} 0 \\ X^{\alpha} \\ 0 \end{pmatrix}, \quad E\omega: \begin{pmatrix} 0 \\ 0 \\ \omega_{\alpha} \end{pmatrix}$$
(11)

respectively, with respect to the adapted frame $\left\{B_{(\overline{\beta})}, C_{(\beta)}, C_{(\overline{\beta})}\right\}$ of the cross-section $\beta_{\theta}(T(M_n))$ determined by a 1-form θ on $T(M_n)$ [8], [9].

2. Complete Lift of Tensor Fields of Type (1,1) on a Cross-Section in Semi-Cotangent Bundle

Suppose now that $F \in \mathfrak{I}_1^1(T(M_n))$ and F has local components F_{β}^{α} in a neighborhood U of M_n , $F = F_{\beta}^{\alpha}\partial_{\alpha} \otimes dx^{\beta}$. Then the semi-cotangent (pull-back) bundle $t^*(M_n)$ of cotangent bundle $T^*(M_n)$ by using projection of the tangent bundle $T(M_n)$ admits the complete lift ${}^{cc}F$ of F with components [8], [9]:

$${}^{cc}F: ({}^{cc}F_{J}^{I}) = \begin{pmatrix} F_{\beta}^{\alpha} & y^{\varepsilon}\partial_{\varepsilon}F_{\beta}^{\alpha} & 0\\ 0 & F_{\beta}^{\alpha} & 0\\ 0 & p_{\sigma}(\partial_{\beta}F_{\alpha}^{\sigma} - \partial_{\alpha}F_{\beta}^{\sigma}) & F_{\alpha}^{\beta} \end{pmatrix},$$
(12)

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\alpha}})$ on $t^*(M_n)$. Then ${}^{cc}F$ has components F_B^A given by

$${}^{cc}F = ({}^{cc}F^A_B) = \begin{pmatrix} F^{\alpha}_{\beta} & L_V F^{\alpha}_{\beta} & 0\\ 0 & F^{\alpha}_{\beta} & 0\\ 0 & \varphi_F \theta & F^{\beta}_{\alpha} \end{pmatrix}$$
(13)

220

with respect to the adapted frame $\left\{B_{(\overline{\beta})}, C_{(\overline{\beta})}, C_{(\overline{\beta})}\right\}$ of the cross-section $\beta_{\theta}(T(M_n))$ determined by a 1-form θ in $T(M_n)$, where $A = (\overline{\alpha}, \alpha, \overline{\overline{\alpha}}), B = (\overline{\beta}, \beta, \overline{\overline{\beta}})$ [8], [9]. Also, the component ${}^{\alpha}F_{\beta}^{\overline{\alpha}}$ of ${}^{\alpha}F_{B}^{A}$ is defined as Tachibana operator $\phi_F \theta$ of F, i.e.,

$$F_{\beta}^{\overline{\alpha}} = \phi_F \theta = (\partial_{\beta} F_{\alpha}^{\sigma} - \partial_{\alpha} F_{\beta}^{\sigma}) \theta_{\sigma} - F_{\beta}^{\nu} \partial_{\nu} \theta_{\alpha} + F_{\alpha}^{\nu} \partial_{\beta} \theta_{\nu},$$

and $L_V F^{\alpha}_{\beta}$ denotes the Lie derivative of F^{α}_{β} with respect to V, i.e.,

$$L_V F^{\alpha}_{\beta} = V^{\gamma} \partial_{\gamma} F^{\alpha}_{\beta} + F^{\alpha}_{\gamma} \partial_{\beta} V^{\gamma} - F^{\gamma}_{\beta} \partial_{\gamma} V^{\alpha}.$$

3. Adapted Frames and Diagonal Lifts of Affinor Fields

Let ∇ be a symmetric affine connection in M_n . In each coordinate neighborhood $\{U, x^{\alpha}\}$ of M_n , we put

$$X_{(\alpha)} = \frac{\partial}{\partial x^{\alpha}}, \quad \theta^{(\alpha)} = dx^{\alpha}$$

Then 3n local vector fields $Y_{(\alpha)}$, $^{HH}X_{(\alpha)}$ and $^{vv}\theta^{(\alpha)}$ have respectively components of the form

$$Y_{(\alpha)}: \begin{pmatrix} \delta^{\beta}_{\alpha} \\ 0 \\ 0 \end{pmatrix}, \quad {}^{HH}X_{(\alpha)}: \begin{pmatrix} -\Gamma^{\alpha}_{\beta} \\ \delta^{\beta}_{\alpha} \\ \Gamma_{\beta\alpha} \end{pmatrix}, \quad {}^{vv}\theta^{(\alpha)}: \begin{pmatrix} 0 \\ 0 \\ \delta^{\alpha}_{\beta} \end{pmatrix}$$
(14)

with respect to the induced coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\alpha}})$ in $\pi^{-1}(U)$, where we have used (7). We call the set $\{Y_{(\alpha)}, \overset{v_v}{} \theta^{(\alpha)}\}$ the frame adapted to the symmetric affine connection ∇ in $\pi^{-1}(U)$. On putting

$$\widehat{e}_{(\overline{\alpha})} = Y_{(\alpha)}, \quad \widehat{e}_{(\alpha)} = {}^{HH} X_{(\alpha)}, \quad \widehat{e}_{(\overline{\alpha})} = {}^{vv} \theta^{(\alpha)}$$
(15)

we write the adapted frame as

$$\left\{\widehat{e}_{(B)}\right\} = \left\{\widehat{e}_{(\overline{\alpha})}, \widehat{e}_{(\alpha)}, \widehat{e}_{(\overline{\alpha})}\right\}.$$
(16)

The adapted frame $\{\widehat{e}_{(B)}\} = \{\widehat{e}_{(\overline{\alpha})}, \widehat{e}_{(\overline{\alpha})}, \widehat{e}_{(\overline{\alpha})}\}$ is given by the matrix

$$\widehat{A}:\left(\widehat{A}_{B}^{A}\right) = \begin{pmatrix} \delta_{\beta}^{\alpha} & -\Gamma_{\beta}^{\alpha} & 0\\ 0 & \delta_{\beta}^{\alpha} & 0\\ 0 & \Gamma_{\beta\alpha} & \delta_{\alpha}^{\beta} \end{pmatrix}.$$
(17)

Since the matrix \widehat{A} in (17) is non-singular, it has the inverse. Denoting this inverse by $(\widehat{A})^{-1}$, we have

$$\left(\widehat{A}\right)^{-1} : \left(\widehat{A}_{C}^{B}\right)^{-1} = \begin{pmatrix} \delta_{\theta}^{\beta} & \Gamma_{\theta}^{\beta} & 0\\ 0 & \delta_{\theta}^{\beta} & 0\\ 0 & -\Gamma_{\theta\beta} & \delta_{\beta}^{\theta} \end{pmatrix},$$
(18)

where $\widehat{A}(\widehat{A})^{-1} = (\widehat{A}_B^A)(\widehat{A}_C^B)^{-1} = \delta_C^A = \widetilde{I}$, where $A = (\overline{\alpha}, \alpha, \overline{\overline{\alpha}}), B = (\overline{\beta}, \beta, \overline{\beta}), C = (\overline{\theta}, \theta, \overline{\overline{\theta}}).$

If we take account of (16), we see that the diagonal lift $\overset{DD}{\to}F$ of $F \in \mathfrak{I}_1^1(T(M_n))$ has components [8], [9]:

$${}^{DD}F: {}^{DD}F_{J}^{I} = \begin{pmatrix} -F_{\beta}^{\alpha} & -\Gamma_{\varepsilon}^{\alpha}F_{\beta}^{\varepsilon} - \Gamma_{\beta}^{\varepsilon}F_{\varepsilon}^{\alpha} & 0\\ 0 & F_{\beta}^{\alpha} & 0\\ 0 & \Gamma_{\beta\sigma}F_{\alpha}^{\sigma} + \Gamma_{\alpha\sigma}F_{\beta}^{\sigma} & -F_{\alpha}^{\beta} \end{pmatrix},$$
(19)

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ on $t^*(M_n)$, where

$$\Gamma^{\alpha}_{\varepsilon} = y^{\gamma} \Gamma^{\alpha}_{\gamma \varepsilon}, \quad \Gamma_{\alpha \sigma} = p_{\gamma} \Gamma^{\gamma}_{\alpha \sigma}$$

which proves (19).

We now see, from (16), that the diagonal lift ${}^{DD}F$ of $F \in \mathfrak{I}_1^1(T(M_n))$ has components of the form

$${}^{^{DD}}F:({}^{^{DD}}F^{A}_{B}) = \left(\begin{array}{ccc} -F^{\alpha}_{\beta} & 0 & 0\\ 0 & F^{\alpha}_{\beta} & 0\\ 0 & 0 & -F^{\beta}_{\alpha} \end{array}\right)$$

with respect to the adapted frame $\{\widehat{e}_{(B)}\}$ in $t^*(M_n)$.

We now obtain from (19) that the diagonal lift $\overset{DD}{=} F$ of an affinor field $F \in \mathfrak{I}_1^1(T(M_n))$ has along $\beta_{\theta}(T(M_n))$ components of the form [8], [9]:

$$^{DD}F: \begin{pmatrix} -F^{\alpha}_{\beta} & -(\nabla_{\varepsilon}V^{\alpha})F^{\varepsilon}_{\beta} - (\nabla_{\beta}V^{\varepsilon})F^{\alpha}_{\varepsilon} & 0\\ 0 & F^{\alpha}_{\beta} & 0\\ 0 & -(\nabla_{\beta}\theta_{\sigma})F^{\sigma}_{\alpha} - (\nabla_{\alpha}\theta_{\sigma})F^{\sigma}_{\beta} & -F^{\beta}_{\alpha} \end{pmatrix},$$
(20)

with respect to the adapted frame $\{B_{(\overline{\beta})}, C_{(\beta)}, C_{(\overline{\beta})}\}$.

Then we see from (7) that the horizontal lift ${}^{HH}X$ of a vector field $X \in \mathfrak{T}_0^1(T(M_n))$ has along $\beta_\theta(T(M_n))$ components of the form

$$^{HH}X:\left(\begin{array}{c}-X^{\beta}\left(\nabla_{\beta}V^{\alpha}\right)\\X^{\alpha}\\-\left(\nabla_{\beta}\theta_{\alpha}\right)X^{\beta}\end{array}\right)$$
(21)

with respect to the adapted frame $\left\{B_{(\overline{\beta})}, C_{(\beta)}, C_{(\overline{\beta})}\right\}$ [8], [9].

Using (7), (20) and (21), we have along $\beta_{\theta}(T(M_n))$:

Theorem 3.1. If F and X are affinor and vector fields on $T(M_n)$, and $\omega \in \mathfrak{I}_1^0(M_n)$, then with respect to a symetric *affine connection* ∇ *in* M_n *, we have* [8], [9]:

- (i) ${}^{DD}F({}^{HH}X) = {}^{HH}(FX),$ (ii) ${}^{DD}F({}^{vv}\omega) = -{}^{vv}(\omega \circ F).$

Theorem 3.2. If $F, G \in \mathfrak{I}_1^1(M_n)$, then with respect to a symetric affine connection ∇ in M_n , we have [9]:

$${}^{DD}F^{DD}G + {}^{DD}G^{DD}F = {}^{HH}(FG + GF).$$

Theorem 3.3. If $F, G \in \mathfrak{I}_1^1(M_n)$, then with respect to a symetric affine connection ∇ in M_n , we have [9]:

$${}^{DD}F^{HH}G + {}^{DD}G^{HH}F = {}^{HH}F^{DD}G + {}^{HH}G^{DD}F = {}^{DD}(FG + GF).$$

Putting F = G in Theorem 3.2 and Theorem 3.3, we have

$$\begin{array}{rcl} {}^{HH}F^{DD}F & = & {}^{DD}F^{HH}F = {}^{DD}(F^2) \\ ({}^{DD}F)^{2p} & = & {}^{HH}(F^{2p}), \ ({}^{DD}F)^{2p+1} = {}^{DD}(F^{2p+1}), \ (p=1,2,\ldots) \end{array}$$

for any $F \in \mathfrak{I}_1^1(T(M_n))$.

222

Theorem 3.4. The diagonal lift \widehat{J} of the identity tensor field I of type (1, 1) has the components [9]:

$$\widehat{J} : \begin{pmatrix} -\delta^{\alpha}_{\beta} & 2\Gamma^{\alpha}_{\beta} & 0\\ 0 & \delta^{\alpha}_{\beta} & 0\\ 0 & 2\Gamma_{\beta\alpha} & -\delta^{\beta}_{\alpha} \end{pmatrix}.$$
(22)

From Theorem 3.4, we have

Theorem 3.5. The diagonal lift \widehat{J} of the identity tensor filed I of type (1, 1) satisfies $\widehat{J^2} = I$.

Proof. In fact, from (22), we easily see that

$$\begin{split} \widehat{J}^{2} &= \widehat{J}(\widehat{J}) = (\widehat{I}^{A}_{B})(\widehat{J}^{B}_{C}) \\ &= \begin{pmatrix} -\delta^{\alpha}_{\beta} & 2\Gamma^{\alpha}_{\beta} & 0\\ 0 & \delta^{\alpha}_{\beta} & 0\\ 0 & 2\Gamma_{\beta\alpha} & -\delta^{\beta}_{\alpha} \end{pmatrix} \begin{pmatrix} -\delta^{\beta}_{\theta} & 2\Gamma^{\beta}_{\theta} & 0\\ 0 & \delta^{\beta}_{\theta} & 0\\ 0 & 2\Gamma_{\theta\beta} & -\delta^{\theta}_{\beta} \end{pmatrix} \\ &= \begin{pmatrix} \delta^{\alpha}_{\theta} & 2\Gamma^{\alpha}_{\theta} - 2\Gamma^{\alpha}_{\theta} & 0\\ 0 & \delta^{\alpha}_{\theta} & 0\\ 0 & 2\Gamma_{\theta\alpha} - 2\Gamma_{\theta\alpha} & \delta^{\theta}_{\alpha} \end{pmatrix} \\ &= \begin{pmatrix} \delta^{\alpha}_{\theta} & 0 & 0\\ 0 & \delta^{\alpha}_{\theta} & 0\\ 0 & 0 & \delta^{\theta}_{\alpha} \end{pmatrix} \\ &= \delta^{A}_{C} \\ &= \widehat{I}. \end{split}$$

Theorem 3.6. The lifts ${}^{HH}X$ of $X \in \mathfrak{T}_0^1(T(M_n))$ and ${}^{vv}\omega$ of $\omega \in \mathfrak{T}_1^0(M_n)$ have respectively components

$$(i)^{HH}X: \begin{pmatrix} 0\\ X^{\alpha}\\ 0 \end{pmatrix}, (ii)^{vv}\omega: \begin{pmatrix} 0\\ 0\\ \omega_{\alpha} \end{pmatrix}$$

with respect to the adapted frame $\{\widehat{e}_{(B)}\} = \{\widehat{e}_{(\overline{\alpha})}, \widehat{e}_{(\overline{\alpha})}, \widehat{e}_{(\overline{\alpha})}\}$, X^{α} and ω_{α} being local components of X and ω respectively.

Proof. (i) If $X \in \mathfrak{I}_0^1(T(M_n))$, from (7) and from (17), then we have

$$\begin{split} \widehat{A}^{HH} X &= \begin{pmatrix} \delta^{\alpha}_{\beta} & -\Gamma^{\alpha}_{\beta} & 0\\ 0 & \delta^{\alpha}_{\beta} & 0\\ 0 & \Gamma_{\beta\alpha} & \delta^{\beta}_{\alpha} \end{pmatrix} \begin{pmatrix} -\Gamma^{\beta}_{\theta} X^{\theta} \\ X^{\beta} \\ X^{\theta} \Gamma_{\beta\theta} \end{pmatrix} \\ &= \begin{pmatrix} 0 \\ X^{\alpha} \\ 0 \end{pmatrix}. \end{split}$$

(ii) If $\omega \in \mathfrak{I}_1^0(M_n)$, from (7) and from (17), then we have

$$\widehat{A}^{vv}\omega = \begin{pmatrix} \delta^{\alpha}_{\beta} & -\Gamma^{\alpha}_{\beta} & 0\\ 0 & \delta^{\alpha}_{\beta} & 0\\ 0 & \Gamma_{\beta\alpha} & \delta^{\beta}_{\alpha} \end{pmatrix} \begin{pmatrix} 0\\ 0\\ \omega_{\beta} \end{pmatrix}$$
$$= \begin{pmatrix} 0\\ 0\\ \omega_{\alpha} \end{pmatrix}.$$

Using Theorem 3.1, we have

Theorem 3.7. $F, G \in \mathfrak{I}_1^1(M_n)$, then

$$\begin{bmatrix} DD F, DD G \end{bmatrix} = DD [F, G].$$

Proof. If X is an arbitrary vector field in $T(M_n)$, then

$$\begin{bmatrix} DD F, DD G \end{bmatrix}^{HH} X = DD F^{DD} G^{HH} X - DD G^{DD} F^{HH} X$$
$$= DD F^{HH} (GX) - DD G^{HH} (FX)$$
$$= H^{H} (FGX - GFX)$$
$$= H^{H} ([F, G] X)$$
$$= DD [F, G]^{HH} X$$

by virtue of Theorem 3.1. Thus we have $\begin{bmatrix} DD F, DD & G \end{bmatrix} = DD [F, G]$. \Box

References

- [1] D. Husemoller, *Fibre Bundles*, Springer, New York, 1994.
- [2] C.J. Isham, "Modern differential geometry for physicists", World Scientific, 1999.
- [3] H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton University Press., Princeton, 1989.
- [4] L.S. Pontryagin, Characteristic classes of differentiable manifolds, Transl. Amer. Math. Soc., 7 (1962) 279-331.
- [5] N. Steenrod, *The Topology of Fibre Bundles*. Princeton University Press., Princeton, 1951.
- [6] V. V. Vishnevskii, Integrable affinor structures and their plural interpretations, Geometry, 7.J. Math. Sci., (New York) 108, no. 2 (2002) 151-187.
- [7] K. Yano and S. Ishihara, *Tangent and Cotangent Bundles*, Marcel Dekker, Inc., New York, 1973.
- [8] F. Yıldırım, Diagonal lift in the semi-cotangent bundle and its applications. Turk J Math, 42, no.3 (2018) 1312-1327.
- [9] F. Yıldırım and K. Akbulut, Some properties of diagonal lifts in semi-cotangent bundles. Applied Mathematics and Nonlinear Sciences 6, no. 1 (2021) 479–488.
- [10] F. Yıldırım, On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 no. 1 (2015) 25-38.
- [11] F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, 38 (2014) 325-339.
- [12] F. Yıldırım and A. Salimov, Horizontal Lift Problems in a Special Class of Semi-Cotangent Bundle, Conference on Mathematical Sciences and Applications (IECMSA), Wien, 324, 2014.
- [13] W.A. Poor, *Differential Geometric Structures*, New York, McGraw-Hill, 1981.
- [14] N.M. Ostianu, Step-fibred spaces, Tr Geom Sem 5, Moscow. (VINITI), 259–309, 1974.