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Coefficient Bound Estimates for the Certain Subclasses of Analytic and
Bi-Univalent Function Classes Subordinated to the Improved
g-Exponential Function

Nizami MUSTAFA?, Veysel NEZIR?

“Kafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Tiirkiye

Abstract. In this paper, we introduce and examine a certain subclass of analytic and bi-univalent functions
defined on the open unit disk of the complex plane, subordinated to the improved g—exponential function.
We provide coefficient bounds for the initial coefficients of the functions belonging to the defined class, and
solve the Fekete-Szeg® problem for the proposed class.

1. Introduction and Preliminaries
Let H(U) denote the class of analytic functions on the open unit disk
U:={zeC:|z| <1}

of the complex plane C. Let A be the class of functions f € H(U) of the form
f(z)=z+azzz+agz3+---:Z+Zanz”, a, € C. (1)
n=2

Clearly, every f € A satisfies the normalization f(0) = 0 and f’(0) = 1; functions meeting these conditions
are called normalized in the literature.

We denote by S the well-known subclass of A consisting of univalent functions in U. This class was
first introduced by Koebe [8] and, since then, has become a core object in the geometric function theory.
A milestone was Bieberbach’s 1916 conjecture on the coefficients of functions in S [4], which stimulated
extensive research; see, e.g., [1-3, 5, 9, 10, 20-22].

A function f is called bi - univalent if both f and its inverse f~! are univalent in U and f(U), respectively;
the class of bi-univalent functions in U will be denoted by L. For the inverse

g@w) = fH(w) = w + Ayw* + Asw® + Agw* + - = w + ZAnw", we fU) =U,,
n=2
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it is well known that
Ay=-ay, A3=2a5-a3, As=-a+5mas—ay, ... (2)

The bi - starlike and bi - convex subclasses of X in the unit disk U are defined analytically by

S; = {f ex: %(ZJ{(S)) >0,z€U and %(wj(lg)) >0, we U, }

_ ' zf' ) (wg’ (w))’
Cy .—{er. ‘R( e) )>O, ze U and %(—g’(w) )>0, weui‘o}'

Definition 1.1 (Subordination). If f,g € H(U), then f is said to be subordinate to g, written f < g, if there exists
a Schwarz function v : U — U with w(0) = 0 such that f(z) = g(w(z)).

During the past few years, numerous subclasses of S have been introduced and studied as special
choices of the classes C and S7; see, for example, [12-20, 23].

The functional

Hy (a2, a3) := a3 — a5
is known as the Fekete-Szeg6 functional in the literature. More generally, for a complex parameter i, the
functional
Ha(az, a3; ) = a3 — pa;

is called the generalized Fekete-SzegG functional.

Throughout this section and later on, we use the classical definitions of basic g-analysis. For g € (0,1)
and n € N, the g-number and the g-factorial are defined by

n n—-1

[n], = 1__2 R K I VRN (UKES W 1 RES R R B
k=0
It is immediate that
i = i [
qll)l’{l_[l’l]q n, qll)ns_[n]q. n!.

In the standard approach to the g-calculus, g-exponential function and improved g-exponential function
are defined as follows (see [6]):

= 2 - 1 1
e.(z) = = , O< <1,Z < — 7
@ =2 = pmaggmy 0<li<vH<i—

00 n(n—1) n )
Tz
E@=ey@=y ] I - [o+a-grz o<pi<izec.
n=0 ’ n=0

It can easily be seen that
lir? e(z) =€ and lir? E (z) = ¢
g=1" =1

Now, let us define new subclasses of bi-univalent functions defined in the open unit disk U.

Definition 1.2. For 7 € C\ {0}, p € [0,1], and q € (0, 1), the function f € L is said to be in the class Nx(t, ; E4(2))
if the following conditions are satisfied:

(1- ﬁ){l + %[ZJJ:;S) - 1]} + ﬁ{l + %[[ZJJ:((;)]I - 1} <Eiz), zel,
(

a —ﬁ){l N %[wj('w?) _ 1} +ﬁ{1 + %[% - 1]} <E/w), wel,.
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Inthecasesg — 17,7 =1, =0, and § = 1, from Definition 1.2, we have the following subclasses of
bi-univalent functions.

Definition 1.3. For 7 € C\ {0} and 8 € [0, 1], the function f € X is said to be in the class Nx(t, B; €*) if the following
conditions are satisfied:

12/ @I :
aopfo LD A By

g (w) 1 [wg' )] -
(1- ﬁ){ [ ) 1]} ﬁ{1+T[ ) 1]}<e, w € Uy,

Definition 1.4. For € [0,1] and q € (0, 1), the function f € L is said to be in the class Nx(B, E;(2)) if the following
conditions are satisfied:
zf'(z) L [zf'@)]

C=Pfey P p <@ el
(1- 5)wgg(z(;;) +ﬁ[ ;’((w))] <Ejw), we Uy,

Definition 1.5. For t € C\ {0} and q € (0, 1), the function f € L is said to be in the class S5.(t, E4(2)) if the following
conditions are satisfied:

- 1| < Ej(w), w € Uy,

2f'(2) 1[wg ()
[f() ]<Eq(z),z€ll, 1+T[ )

Definition 1.6. For 7 € C\ {0}, € [0,1], and g € (0,1), the function f € ¥ is said to be in the class Cx(t, E4(2)) if
the following conditions are satisfied:
1+ 1[[7‘1[1(2)] [wy’ @)
f@ g'(w)
Let P be the class of analytic functions defined in U which satisfy the conditions p(0) = 1 and R[p(z)] >
0,z € U. Itis clear that the functions which satisfy these conditions have the following series expansion:

—1]<Eq(z),zeu, 1+ - [ —1]<Eq(w), w € Uy,.

p(z)=1+plz+pzzz+-~-=1+ipnz”, zel 3)
The class P defined above is known as the class of Carathéodory functions in the literature [11].
Now we give some lemmas which we will use in the proof of our main results.
Lemma 1.7 ([7]). Let the function p belong to the class P. Then
lpnl <2 foreachn € N, [Pn — vPipnil <2 forn,k e N,n > k,v €[0,1].
The equalities hold for the function )
+z

p(z)zl_z, zell

Lemma 1.8 ([7]). Let p € P. Then
sz—p1+(4 |22 )x,
4ps = p} +2(4 = php1x — (4 = pp1® +2(4 = pH)(1 = IxP)y,
forsome x,y € Cwith |x| < 1and |y| < 1.

In this paper, we give some coefficient estimates, and solve the Fekete-Szegt problem for the class
Nx(1, ; E4(2)).
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2. Main Results

130

In this section, we first state the following theorem concerning the coefficient problem for the class

Nx(t, B; Eq(z))-

Theorem 2.1. Let f € Nx(7,; E4(z)). Then, we have the following estimates

(1+p*

2(1+2B) It < 30729 2(1 +2p)

(1+p)

(1+pB)?’ e I_2(1+2,6’)

1
R A EIUL
and
ol < __ o fmax {Y(to), P(2)},
=121+ 38) | max {¥(0), ¥(2)},
where

Y (o) =A(T,Bq)tg +B(@) 5+ C(t,p)to+ D (q)  to =

if A(7,B,9) <0,
ifA(t, B,9) 2 0,

~B(g9)+ VA
BA(%,B,9)

_ _(7+4p)I P 1517 1
A=B*(q)-3A(t,8,9)C(v,p), AT, B,q) = 201 + L, B2 2
_ _ 15[ ) g
R O = Ut e

_ 4(1+2q)

P (0) = WP (2) =

A0+ A 3
(1 + ﬁ)3 [3]11 [2],1 ’

Proof. Let f € Nx(1, ; E4(2)). Then, there exist Schwarz functions w : U — U and @ : U,, — U, such that

(1—ﬁ){1+%[2;(5)_1]}%{“%[[2]{/((;)] _1]} @), el

1[wg’ (w) 1| (wg’ (w))’
R o R e

- 1]} = Ej(@(w)), w € Uy,.

Using the relation between Schwarz and Carathéodory functions, define p, ¢ € P by:

_1+w(z) B 5. ;
p(z)—l_w(z)—l+plz+pzz +p3z° + —1+;pnz, zel,

(P()_1+®Ew;—1+<p1w+qb2w2+qb3w3+-~-:1+Z¢nw", we U,

n=1

It follows that

z2) -1 1 p 1 i
w(z)=g223+1 =%1Z+2[P2—?1]Z +—(P3—P1P2—Zl]z +- zel,

w) — 2 (PS

o) = G = 5 (¢z—¢—]w +—(¢s—¢1¢z——]w b, well,

(4)

(5)

(6)
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From (5) and (7), we obtain

(1 + B)ayz + [2(1 +2B)az — (1 + 3/3)a§]z2 + [3(1 +3B)ay — 3(1 + 5ﬁ)a2a3 +(1+ 7ﬁ)a§]z3 4o

= el 2pz—(1—i)p}z+ [4;73 dpips+ S (2p—p >—(1—i)p3
' [2]' [3],!) "

3
+--- e U,
5 2] Z ; Z ,

(1+ B)Axw + [2(1+28)As — (1 + 3B)A3[w? + [3(1 + 3B)As — 3(1 + 5B)AxAs + (1 + 7R)A3|w® +

3
=%¢1w+£[2¢2—( 21! )¢1]w ’ [4‘]53 4¢1¢2+[z]' 2¢2‘¢’1)_( [g_h!)¢?]w3+”"weur”'

Equating coefficients in (8) yields

= (f’fﬁ), 2(1 +2)as — (1 + 3p)a = [zpz ( ﬁ) pg],
3(1+3B)ay — 3(1 + 5B)aas + (1 + 7B)a3 = [4p3 —dpipy + =L [2] @) ( ;7_ ) ] o)
and similarly
o = —2(;‘21[_3), 2(1+28)As — (1 + 3p)A2 = [2@ _( _ 2%})(751],
3(1+3B)As — 3(1 + 5p)A2AAs + (1 + 7B)A] = [4¢3 41 + —T [2] 22— 9D - (1 ) ¢1] (10)
_ ]

From a, = we get p1 = —¢1. Applying Lemma 1.8 to this identity gives the first

21+p)  21+p)
assertion of the theorem. Using Ay = —a;, A3 = 211% —az, Ay = —ag + Baraz — ay see [3], the second and third
identities in (10) become

—2(1 +2B)as + (3 + 5p)a3 = E[zq;z — (1 - [ZL].,J)%] )

—3(1 + 3B)ay + 6(2 + 5B)azas + 2(1 + 7P)a3 = %[4% 4d1ha + G (2q>2 - - (1- & ')qbl] (11)
Subtracting the first of (11) from the second identity in (9) gives

40+ 2p)(as —a3) = 3 (p2— ¢2).

By Lemma 1.8, we obtain
, @-p)r

B=0F 160+ 25)( —v (12)

for some x, y € C with |x| <1 and |y| < 1. Using a, = from (9), (12) can be written as:

1/3)

?p? @-phHr
A1+p)2 16(1+2p)

az = (x—y), forsomex,yeCwithl|x <1, |y <1
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Hence, by the triangle inequality,

s I Gl )]

Saaapr’ TieeopEte el i=ipl (13)

|as| <

From (13), we get
|7l

las| < a(z, B) 1 + 20+ €[0,2], (14)
where ,
1 7|
OB = 0+ R B+ 2p)
Maximizing
_ 2 7|
p(t) =a(t,p)t° + Z(TZﬁ)' te[0,2],
we easily obtain
B <1 ifagp) <0 ) < LI a(1,) > 0
PO aaeap "D =D PO TrePER

Taking these into account in (13) yields the second assertion of the theorem.

Estimate for |a4]. Subtracting the second identity in (11) from the third identity in (9), we obtain

3
6(1 + 3B)as — 15(1 + B)azas — (1 + 7p)a3 = {2(;73 = ¢3) = 2p1(p2 + ¢2) + 2 —¢2) - ( [Z] ) 3}

Using the expressions already found for a, and a3, we arrive at

3 T 151 q (7+4p)* 1 7
“= 100 +3ﬁ){[8(1 ot @](pz =02 =i+ 00+ (s = 03 + [ Tpr Tl B, )]p?}

Since (Lemma 1.8)
2

Hay,

2

> Lx-y), pthp=p+

@ -phm
2

p2—¢o =

ps— 3 = {m + (4= phpix+y) - @+ +@E-p)[A - Pz - (1 - Iylz)w]},

we obtain

2

—p2
5 (x+ y)}

N 151 9 14-7 2
ag = 12(1+3ﬁ){[8(1+2ﬁ) P1+@] 2 (x—y)—;ﬂ1[r11+

4 -pHm
2

+ %[pi + @& —-pDmx+y) - @+ )+ @=-p)|A - Pz - (1 - Iylz)w]]

7 +4p)2 1 7
[ st )

for some x, y, z,w € C with |x|, |yl, |z, |w| < 1. Hence, by the triangle inequality,

H 15/7| @-P) 7 +4pIe?
< e [ pp) € G e (G )
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where t = |p1], € = x|, 1 = |y|l. Maximizing in &, n] gives

I| (7 +4p)l<P ¢ 157 1 q 15)7]
sl < a3 {[ 20+p7 231, 81+2p) E]ts -(1+ @V * [2(1 +28) +2e+ @ * 4}

€[0,2]. Let ¢ : R — R be defined by:
() = A(t, B, 9)f + B(9)* + C(7, p)t + D(q), te0,2],

where

4P P 15/1| 1 ~ q
AWp ) = 7 taaL Br2p 2 B(q) = —(1+ @)
15|7|

D(q) = (1 + i)

C(z, ﬁ) = [Z]q

21+2p)
Maximizing 1 on [0, 2] gives
max{y(t), ¥(2)}, A(zr,B,9) <0,
P(t) <

max{(0), P(2)}, A(z,B,9) 20,

where

-B A
o= %, A = B(g)* - 3A(t, B,9)C(1, ),
and 01+29) A7+4Pl 4 3
+2q : + T i__q
vO=TT YOS T L Rl
Therefore,

lag| <

I7| max{y(to), P(2)}, A(r,B,9) <0
1201+ 3p) |max{y(0), p(2)}, A(z,8,4) 20

This completes the proof. [J
In the casesg — 17,7 =1, f = 0 and = 1, the following corollaries follow from Theorem 2.1.

Corollary 2.2. If f € Nx(t, f; €%), then

I a+p?
Tl 2(1+2p) = 2(1 +2p)
L L IR o
(1+p7’ =21 +2p)°
Moreover,
e T [max, Y@, AR <0
M D203 | maxi(0), v@)), AR 20,
where
3+ /Ao(T, B)
Wlto) = H2A(t, )£~ 382 +2C(1, B to + 12}, 1o = Tsﬁ)’

(7 + 4p)ltl? 15/1| 1
20+p7  8(1+2B) 3
47 +4p)1|

D:6, IP(O) :6, 1#(2)2 W—%

Ao(t, p) = 3[3 - 4A(7, B)C(T, )], A(1,B) =

15|7|

3
B=-7, C(t,p) = 20+28)

2
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Corollary 2.3. If f € Nx(B, Eq(z)), then

<L
laz| < T+p |3|_(1+/3)2
and
] < 1 max{y(to), ¥(2)}, ifA(B,q) <0,
17 20430 {maxip(0), p@)l,  fAB,9) 20,
where
-B A1(B,
$) = AR+ BO B +C DG, =D D,

—_

MG =BG —3AB0CE),  ABp= B T 151
1(8,9) = B(g DCP), 20+p73  2[3], 81+28) 2
q _ 8p+19 1
s =-{1+gp) =gy P0=dirg)

41 +2q) 2) = 4(7+4ﬁ) 4i 3(]
1vq YOS T 2L

P(0) =

Corollary 2.4. If f € Sy (7, Ey(2)), then

1, <1
ool < I, |a3|s§{ =z
2lt|, ifltl = 3,
and
] < Jz| jmax {Y(t), Y(2)}, if Ao(T,q) <O,
12 | max {W(0), ()}, if Ao(t,q) =0,
where
-B VA (T,
(ko) = Ao(r, ) £+ B(@) & + Co(r) to + D(g), o = (@) + VAo ”’),
3Ao(T,9)

7tP-1 ¢ 15
Dalr,g) = BGP ~3Au(n)Cal),  Ad(r) = 1o+ 5T -
q

q _ 15|7| _ q
B(g) = (1 + _[Z]q) Co(r) = - +2, D(g) = (1 + —[2] )
_ 4(1+29) _ 4P 3
VO == Y@= g - g

Corollary 2.5. If f € Cx(1,E4(2)), then

1 2

~ zf'Tl <z

ml <™ <] ® 3
2 k4| g

3

Z/ lf|T| Z =,
and

< |T| {max Y(to), ¥(2)}, if Ai(t,q) <O,

48 | max {W(0), ()}, if Ai(t,q) =0,
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where

=B(q) + \/As(1,9)
3A(tq)
11|72 - 10|7| .\ 7° -3l
16 23], '
5/7| q

q = —
B(g) = (1 + ﬁ) Ci(r) = > +2, D(g) = (1 + @)

U(to) = Ai(T,q) 5 + B@) 5 + Ca(D) to + D(g),  to =

As(t,9) = B()® = 3A1(7, q)Ci(0),  Ai(r,q) =

_4(1+29) 11|r| 4q° 3q
lP(O)——1 w7 Y(2) = — [3]q 2

Now, we give the following theorem on the Fekete-Szego problem for the class Ny (T, B E, (z)).

Theorem 2.6. Let f € Nx(7,B; E4(z)) and u € C. Then

2

] < e LRI E 1+f;
T i TR iy
a+pr " T+28°

Proof. From the proof of Theorem 2.1 we have, for some x,y € Cwith [x| <1, |y| <1,

2,2 2
2 P (4.—}71)’[
as =iy = (1= W3a 57 ¥ Te + 29)

(x—y).

Hence )
11— ul ITI (4 -l

3z - e < 41+p2 T 16(1+2p)
Maximizing the right-hand side of (15) over &, 7 yields

&+n,  &nel01], t=Ipl (15)

|as — pad| < = 9(1, B, ) 2 + te[o,2], (16)

4
1+28]
where
21 —pllr 1

(1+p)? 1+28°

Maximizing the function x : [0,2] — R defined as follows

O(z, B, 1) =

4
x(t)=0(t,Bu)t + T35

we can easily see that x (t) < 1753 +2ﬁ if 0 (7,8, 1) <0and

if (7, B, 1) > 0.
By taking these estimates obtained for the function y into account in the inequality (16), we complete
the proof of the theorem. [J

In the cases g — 17,7 =1, f = 0 and = 1, the following corollaries follow from Theorem 2.6.
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Corollary 2.7. If f € Nx(t, ; €%), then

1 . (1+py
Toa’ if 21— ulltl < ,
|%_yﬁw<ﬁll+2ﬁ fo = 1+2p
2720211 -yl 21 |||>(1+/3)2
a+pP’ ¥ HIT =10
Corollary 2.8. If f € Nx(B, E4(2)), then
1 , (1+B)?
o 1|T+28 if2]1 -yl < T+28"
a3 — a3] < 5 _ 2
2|21 -yl (1+5)

) > '
1+ B)? ol —ul = 1+28
Corollary 2.9. If f € S.(t, E4(2)), then

1, if2]1—pllt| <1,

2 ||
az — uas| < —
oo - uif =3 {2|1 —plltl, 211 = pllel > 1.

Corollary 2.10. If f € Cx(t, E4(2)), then

1

= iF311 — pllel < 2,
3
PTHRIR S 11— el if 31 — pl[7] > 2

2 4
Also, taking y = 0 and p = 1 in the Theorem 2.2, we obtain the following results, respectively.

Corollary 2.11. If f € Nx(1, B; E;(2)), then

1 . (1+p)°
g < 1) TH 26 2l < o
I=0 2|7| ) (1+p)
20 ifop > .
1+p 1+2p
Corollary 2.12. If f € Nx(1, B; E;(2)), then
2 ||
9 =0l < 5 apy

Remark 2.13. Corollary 2.11 confirms the second assertion of Theorem 2.1.

In addition, taking p =1, f = 0 and § = 1 in the Theorem 2.6, we obtain the following results, respectively.

Corollary 2.14. If f € Si.(7, E4(2)), then
a3 —a?| < m
3 2l = 2-

Corollary 2.15. If f € Cx(1, E4(2)), then

2 Il
a3 — Elzl < g
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3. Conclusion

We introduced the class Nx(1, f; E4(2)) of bi-univalent functions subordinated to the improved g—exponen-
tial function and derived coefficient bounds for the initial coefficients. In particular, using the Carathéodory
representation (3) and subordination techniques, we obtained estimates for |a,| and |a3|, an explicit piece-
wise upper bound for |a4| (see Theorem 2.1), and solved the Fekete-Szeg6 problem for Nx(7,f3; E;(2))
(Theorem 2.6). Special cases arising from g — 17,7 = 1, § = 0, and = 1 yield corollaries that recover
known results for bi-starlike and bi-convex subclasses and confirm the consistency of our estimates.
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