

Coefficient Bounds for A Subclass of Analytic Functions Associated with Chebyshev Polynomials and Deniz-Orhan Operator

Neslihan UYANIK^a

^a*Anadolu University, Faculty of Education, Department of Mathematics, Eskişehir, Türkiye*

Abstract. In this paper, we obtain initial coefficients $|a_2|$ and $|a_3|$ for a certain subclass by means of Chebyshev polynomials expansions of analytic functions defined by Deniz-Orhan operator in \mathcal{D} .

1. Introduction and Preliminaries

Let \mathcal{A} be the class of the functions of the form:

$$f(z) = z + \int_2^{\infty} a_n z^n dn \quad (1)$$

which are analytic in the open unit disc

$$D := \{z : z \in \mathbb{C} : |z| < 1\}$$

and satisfying the conditions $f(0) = 0$ and $f'(0) = 1$.

Also, let \mathcal{S} be the subclass of \mathcal{A} consisting of the form (1) which are univalent in \mathcal{D} .

Let f and g be analytic functions in \mathcal{D} . We define that the function f is subordinate to g in \mathcal{D} and denoted by

$$f(z) \prec g(z) \quad (z \in \mathcal{D}),$$

if there exists a Schwarz function ω , which is analytic in \mathcal{D} with $\omega(0) = 0$ and $|\omega(z)| < 1$ ($z \in \mathcal{D}$) such that

$$f(z) = g(\omega(z)) \quad (z \in \mathcal{D}).$$

If g is a univalent function in \mathcal{D} , then

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \quad \text{and} \quad f(\mathcal{D}) \subset g(\mathcal{D}).$$

For a function for $f(z) \in \mathcal{A}$, the multiplier differential operator $D_{\alpha,\delta}^n f$ was extended by Deniz and Orhan [6] as follows:

$$D_{\alpha,\delta}^0 f(z) = f(z),$$

Corresponding author: NU mail address: nuyanik@anadolu.edu.tr ORCID:0000-0003-1037-8843

Received: 15 October 2025; Accepted: 16 December 2025; Published: 31 December 2025

Keywords. Analytic and univalent functions, subordination, coefficient bounds, Chebyshev polynomial, Deniz-Orhan operator

2010 Mathematics Subject Classification. 30C45, 30C50

Cited this article as: Uyanik, N. (2025). Coefficient Bounds for A Subclass of Analytic Functions Associated with Chebyshev Polynomials and Deniz-Orhan Operator. Turkish Journal of Science, 10(3), 138-142.

$$D_{\alpha,\delta}^1 f(z) = D_{\alpha,\delta} f(z) = \alpha \delta z^2 f''(z) + (\alpha - \delta) z f'(z) + (1 - \alpha + \delta) f(z),$$

$$\vdots$$

$$D_{\alpha,\delta}^n f(z) = D_{\alpha,\delta} (D_{\alpha,\delta}^{n-1} f(z)),$$

where $\alpha \geq \delta \geq 0$ and $n \in \mathbb{N}_0 = \mathbb{N} \cup 0$. If f is given by (1) then from the definition of the operator $D_{\alpha,\delta}^n f(z)$ it is easy to see that

$$D_{\alpha,\delta}^n f(z) = z + \int_{k=2}^{\infty} \Phi_k^n a_k z^k, \quad (2)$$

where $\Phi_k = [1 + (\alpha \delta k + \alpha - \delta)(k - 1)]$, $(\Phi_k^n = [\Phi_k]^n)$; $\alpha \geq \delta \geq 0$ and $n \in \mathbb{N}_0$.

It should be remarked that the $D_{\alpha,\delta}^n f$ is a generalization of many other linear operators considered earlier. In particular, for $f \in \mathcal{A}$ we have the following:

1. $D_{1,0}^n f(z) \equiv D^n f(z)$ the operator defined by Salagean [18].
2. $D_{\alpha,0}^n f(z) \equiv D_{\alpha}^n f(z)$ the operator studied by Al-Oboudi [3].
3. $D_{\alpha,\delta}^n f(z)$ the same operator considered for $0 \leq \delta \leq \alpha \leq 1$, by Raducanu and Orhan [17].

Chebyshev polynomials play a considerable role in numerical analysis. There are four kinds of Chebyshev polynomials. The first and second kinds of Chebyshev polynomials are defined by:

$$T_n(t) = \cos n\varphi \quad \text{and} \quad U_n(t) = \frac{\sin(n+1)\varphi}{\sin\varphi} \quad (-1 < t < 1)$$

where n denotes the polynomial degree and $t = \cos\varphi$. For a brief history of Chebyshev polynomials of the first kind $T_n(t)$, the second kind $U_n(t)$ and their applications one can refer [1], [2], [4], [5], [7]-[16], [19].

Now, we define a subclass of analytic functions in \mathcal{D} with the following subordination condition:

Definition 1.1. A function $f \in \mathcal{A}$ given by (1) is said to be in the class $\mathcal{N}(\gamma, \lambda, t)$ for $0 \leq \gamma \leq 1$, $\lambda \in \mathbb{C} \setminus 0$ and $t \in (\frac{1}{2}, 1]$ if the following subordination hold:

$$1 + \frac{1}{\lambda} \left[(D_{\alpha,\delta}^n f(z))' + \gamma z (D_{\alpha,\delta}^n f(z))'' - 1 \right] \prec H(z, t) = \frac{1}{1 - 2tz + z^2} \quad (z \in \mathcal{D}) \quad (3)$$

where

$$0 \leq \gamma \leq 1, \alpha \geq \delta \geq 0, \lambda \in \mathbb{C} \setminus 0, n \in \mathbb{N}.$$

We consider that if $t = \cos\varphi$ ($\frac{-\pi}{3} < \varphi < \frac{\pi}{3}$), then $H(z, t) = \frac{1}{1 - 2\cos\varphi z + z^2} = 1 + \sum_{n=1}^{\infty} \frac{\sin(n+1)\varphi}{\sin\varphi} z^n \quad (z \in \mathcal{D})$.

Thus, $H(z, t) = 1 + 2\cos\varphi z + (3\cos^2\varphi - \sin^2\varphi)z^2 + \dots \quad (z \in \mathcal{D})$.

So, we write the Chebyshev polynomials of the second kind as following:

$$H(z, t) = 1 + U_1(t)z + U_2(t)z^2 + \dots \quad (z \in \mathcal{D}, -1 < t < 1)$$

where $U_{n-1}(t) = \frac{\sin(n\pi \cos\varphi)}{\sqrt{1-t^2}}$, $n \in \mathbb{N}$ and we have $U_n(t) = 2tU_{n-1}(t) - U_{n-2}(t)$,

$$U_1(t) = 2t, \quad U_2(t) = 4t^2 - 1, \quad U_3(t) = 8t^3 - 4t, \quad U_4(t) = 16t^4 - 12t^2 + 1, \dots \quad (4)$$

The Chebyshev polynomials $T_n(t)$, $t \in [-1, 1]$ of the first kind have the generating function of the form

$$\sum_{n=0}^{\infty} T_n(t) z^n = \frac{1-tz}{1-2tz+z^2} \quad (z \in \mathcal{D}).$$

There is the following connection by the Chebyshev polynomials of the first kind $T_n(t)$ and the second kind $U_n(t)$:

$$\frac{dT_n(t)}{dt} = nU_{n-1}(t), \quad T_n(t) = U_n(t) - tU_{n-1}(t), \quad 2T_n(t) = U_n(t) - U_{n-2}(t).$$

In this paper, we obtain initial coefficients $|a_2|$ and $|a_3|$ for subclass $\mathcal{N}(\gamma, \lambda, t)$ by means of Chebyshev polynomials expansions of analytic functions defined by Deniz-Ozkan operator in \mathcal{D} .

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $\mathcal{N}(\gamma, \lambda, t)$

We begin with the following result involving initial coefficient bounds for the function class $\mathcal{N}(\gamma, \lambda, t)$.

Theorem 2.1. *Let the function $f(z)$ given by (1) be in the class $\mathcal{N}(\gamma, \lambda, t)$. Then,*

$$|a_2| \leq \frac{t|\lambda|}{(1+\gamma)\Phi_2^n} \quad (5)$$

and

$$|a_3| \leq \frac{|\lambda|(4t^2+2t-1)}{3(1+2\gamma)\Phi_3^n} \quad (6)$$

where $\Phi_2^n = [1 + (2\alpha\delta + \alpha - \delta)]^n$ and $\Phi_3^n = [1 + 2(3\alpha\delta + \alpha - \delta)]^n$.

Proof. Let $f \in \mathcal{N}(\gamma, \lambda, t)$. From (3), we have

$$1 + \frac{1}{\lambda} \left[\left(D_{\alpha, \delta}^n f(z) \right)' + \gamma z \left(D_{\alpha, \delta}^n f(z) \right)'' - 1 \right] = 1 + U_1(t)p(z) + U_2(t)p^2(z) + \dots \quad (7)$$

for some analytic functions

$$p(z) = c_1 z + c_2 z^2 + c_3 z^3 + \dots \quad (z \in \mathcal{D})$$

such that $p(0) = 0$, $|p(z)| < 1$ ($z \in \mathcal{D}$). Then, for all $j \in \mathbb{N}$,

$$|c_j| \leq 1$$

and for all $\mu \in \mathbb{R}$

$$|c_2 - \mu c_1^2| \leq \max\{1, |\mu|\}.$$

It follows from (7) that

$$1 + \frac{1}{\lambda} \left[\left(D_{\alpha, \delta}^n f(z) \right)' + \gamma z \left(D_{\alpha, \delta}^n f(z) \right)'' - 1 \right] = 1 + U_1(t)c_1 z + [U_1(t)c_2 + U_2(t)c_1^2]z^2 + \dots \quad (8)$$

It follows from (8) that

$$\frac{2(1+\gamma)\Phi_2^n a_2}{\lambda} = U_1(t)c_1 \quad (9)$$

and

$$\frac{3(1+2\gamma)\Phi_3^n a_3}{\lambda} = U_1(t)c_2 + U_2(t)c_1^2 \quad (10)$$

From (4), (8) and (9), we have

$$|a_2| \leq \frac{t|\lambda|}{(1+\gamma)\Phi_2^n}$$

By using (4) and (8) in (10), we obtain

$$|a_3| \leq \frac{|\lambda|(4t^2+2t-1)}{3(1+2\gamma)\Phi_3^n}$$

which completes the proof of Theorem 1. \square

For $\lambda = 1$ in Theorem 1, we obtain the following corollary.

Corollary 2.2. Let $f \in \mathcal{N}(\gamma, 1, t)$. Then

$$|a_2| \leq \frac{t}{(1+\gamma) \Phi_2^n}$$

and

$$|a_3| \leq \frac{4t^2+2t-1}{3(1+2\gamma) \Phi_3^n}$$

where $\Phi_2^n = [1 + (2\alpha\delta + \alpha - \delta)]^n$ and $\Phi_3^n = [1 + 2(3\alpha\delta + \alpha - \delta)]^n$.

If we choose $\gamma = 0$ in Theorem 1, we get the following corollary.

Corollary 2.3. Let $f \in \mathcal{N}(0, \lambda, t)$. Then

$$|a_2| \leq \frac{t|\lambda|}{\Phi_2^n}$$

and

$$|a_3| \leq \frac{|\lambda|(4t^2+2t-1)}{3\Phi_3^n}$$

where $\Phi_2^n = [1 + (2\alpha\delta + \alpha - \delta)]^n$ and $\Phi_3^n = [1 + 2(3\alpha\delta + \alpha - \delta)]^n$.

Putting $\gamma = 0$ in Corollary 1, we have the following corollary.

Corollary 2.4. Let $f \in \mathcal{N}(0, 1, t)$. Then

$$|a_2| \leq \frac{t}{\Phi_2^n}$$

and

$$|a_3| \leq \frac{4t^2+2t-1}{3\Phi_3^n}$$

where $\Phi_2^n = [1 + (2\alpha\delta + \alpha - \delta)]^n$ and $\Phi_3^n = [1 + 2(3\alpha\delta + \alpha - \delta)]^n$.

Putting $n = 0$ in Corollary 3, we get the following result.

Corollary 2.5. Let $f \in \mathcal{N}(0, 1, t)$. Then

$$|a_2| \leq t$$

and

$$|a_3| \leq \frac{4t^2+2t-1}{3}.$$

References

- [1] Altinkaya, S., Yalçın S. (2016). *On the Chebyshev polynomial bounds for classes of univalent functions*, Khayyam Journal of Mathematics, 2 (1), 1-5.
- [2] Altinkaya, S., Tokgöz S.Y. (2018). *On the Chebyshev coefficients for a general subclass of univalent functions*, Turkish Journal of Mathematics, 42(6), 2885-2890.
- [3] Al-Oboudi FM. (2004). *On univalent functions defined by a generalized Salagean operator*, Int. J. Math. Sci., 25–28, 1429–1436.
- [4] Bulut S, Magesh N, Balaji VK. (2017). *Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials*, J. Class. Anal., 11 (1), 83-89.
- [5] Bulut S, Magesh N, Balaji VK. (2018). *Certain subclasses of analytic functions associated with the Chebyshev polynomials*, Honam Mathematical Journal, 40 (4), 611-619.
- [6] Deniz E, Orhan H. (2010). *The Fekete-Szegö problem for a generalized subclass of analytic functions*, Kyungpook Math. J., 50: 37-47.
- [7] Doha EH. (1994). *The first and second kind Chebyshev coefficients of the moments of the general-order derivative of an infinitely differentiable function*, Int. J. Comput. Math., 51, 21–35.
- [8] Dziok J, Raina RK, Sokol J. (2015). *Application of Chebyshev polynomials to classes of analytic functions*, C. R. Math. Acad. Sci. Paris, 353 (5), 433–438.
- [9] Güney HÖ. (2016). *Initial Chebyshev polynomial coefficient bound estimates for bi-univalent functions*, Acta Univ. Apulensis Math. Inform., 47, 159-165.
- [10] Magesh N, Bulut S. (2018). *Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions*, Afrika Matematika, 29(1-2), 203-209.
- [11] Mason JC. (1967). *Chebyshev polynomial approximations for the L-membrane eigenvalue problem*, SIAM J. Appl. Math., 15, 172–186.
- [12] Mustafa N, Akbulut E. (2018). *Application of the second Chebyshev polynomials to coefficient estimates of analytic functions*, Journal of Scientific and Engineering Research, 5(6), 143-148.
- [13] Mustafa N, Akbulut E. (2019). *Application of the second kind Chebyshev polynomial to the Fekete-Szegö problem of certain class analytic functions*, Journal of Scientific and Engineering Research, 6 (2), 154-163.
- [14] Mustafa N, Akbulut E. (2019). *Application of the second kind Chebyshev polynomials to coefficient estimates of certain class analytic functions*, International Journal of Applied Science and Mathematics, 6 (2), 44-51.
- [15] Orhan H, Magesh N, Balaji VK. (2018). *Second Hankel determinant for certain class of bi-univalent functions defined by Chebyshev polynomials*, Asian-European Journal of Mathematics 2018; 1950017.
- [16] Orhan H, Toklu E, Kadioğlu E. (2018). *Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials*, Turkish Journal of Mathematics, 42(4), 1927-1940.
- [17] Raducanu D, Orhan H. (2010). *Subclasses of analytic functions defined by a generalized differential operator*, Int. J. Math. Anal., 4 (1), 1-15.
- [18] Salagean GS. (1983). *Subclasses of univalent functions*, Complex Analysis - Proc 5th Rom Finn Semin, Bucharest 1981, Part 1, Lect. Notes Math., 1013, 362–372.
- [19] Yousef F, Frasin BA, Al-Hawary T. (2018). *Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials*, arXiv preprint arXiv:1801.09531.