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Fixed Point Property on Large Closed, Bounded and Convex Classes in
Köthe–Toeplitz Dual Spaces

Veysel NEZİRa

aKafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Turkey

Abstract. In this paper, we study the fixed point property for nonexpansive mappings acting on closed,
bounded and convex subsets of Köthe–Toeplitz dual spaces. Our approach focuses on identifying large
classes of subsets which enjoy the fixed point property for nonexpansive mappings. More precisely, within
a given Köthe–Toeplitz dual space, we construct and investigate wide families of closed, bounded and
convex sets on which every nonexpansive self-mapping admits a fixed point. Our results provide a unified
framework for understanding fixed point phenomena on large classes of subsets in Köthe–Toeplitz dual
spaces and extend several earlier contributions in this direction.

1. Introduction

The fixed point property (FPP) for nonexpansive mappings has been a central topic in Banach space
theory and nonlinear functional analysis. It is well known that the existence of fixed points for nonexpansive
mappings depends not only on the global geometric structure of the ambient space, but also on the properties
of the subsets on which the mappings act [5, 6].

In the theory of sequence spaces, Köthe–Toeplitz duals constitute an important class of Banach spaces
arising naturally from summability theory. Several works have been devoted to the construction and
investigation of these duals, focusing mainly on their algebraic, geometric and topological properties. In
particular, generalized difference sequence spaces and their Köthe–Toeplitz duals were introduced and
studied in [1–3]. These works provide the structural background for the study of nonlinear phenomena on
such spaces, but they do not address fixed point properties on closed, bounded and convex subsets.

A different line of research, initiated by Goebel and Kuczumow and further developed in subsequent
works, shows that even when a Banach space fails to have the fixed point property globally, it may still
admit large classes of closed, bounded and convex subsets on which every nonexpansive mapping has a
fixed point [4, 6]. This subset-oriented approach has proved to be particularly effective in fixed point theory
and has inspired many later developments.

Motivated by this perspective, the aim of the present paper is to investigate fixed point phenomena
in Köthe–Toeplitz dual spaces from a subset-oriented point of view. Rather than imposing additional
conditions on the underlying space, we identify and study large classes of closed, bounded and convex
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subsets of a given Köthe–Toeplitz dual space which possess the fixed point property for nonexpansive
mappings.

Recent works have demonstrated that this approach is especially fruitful in the context of Köthe–Toeplitz
duals associated with generalized difference sequence spaces and Cesàro-type constructions [7–12]. The
results of the present paper extend this line of research by constructing new large classes of closed, bounded
and convex subsets with the fixed point property in Köthe–Toeplitz dual spaces.

The paper is organized as follows. In Section 2, we recall the necessary preliminaries concerning
Köthe–Toeplitz dual spaces and nonexpansive mappings. Section 3 is devoted to the main results.

2. Preliminaries

Throughout the paper,N denotes the set of all positive integers and R the field of real numbers. By en
we denote the canonical unit vectors in the classical sequence spaces.

2.1. Generalized difference sequence spaces and their Köthe–Toeplitz dual
Let v = (vk) be a fixed sequence of nonzero real numbers and let m ∈ N be given. Following Çolak [2]

and Et–Esi [3], we consider the generalized m-th order difference operator ∆(m)
v acting on a scalar sequence

x = (xk), defined recursively by

(∆(1)
v x)k = vkxk − vk+1xk+1, (∆(m)

v x)k = (∆(1)
v (∆(m−1)

v x))k, k ∈N.

For a classical sequence space X ∈ {c0, c, ℓ∞}we write

∆(m)
v (X) := {x = (xk) : ∆(m)

v x ∈ X}.

The Köthe–Toeplitz dual of ∆(m)
v (X) is denoted by D(m)

1 ; according to Bektas, Et and Çolak [1] it can be
written as

D(m)
1 =

{
a = (ak) ⊂ R :

∞∑
k=1

km
|ak|

|vk|
< ∞
}
.

The canonical norm on D(m)
1 is

∥a∥(m) =

∞∑
k=1

km
|ak|

|vk|
, a = (ak) ∈ D(m)

1 . (2.1)

With this norm, D(m)
1 is a Banach space.

Define the linear mapping J : D(m)
1 → ℓ1 by

J(a) =
(kmak

vk

)
k∈N
, a = (ak) ∈ D(m)

1 .

It is immediate from (2.1) that J is an isometric isomorphism onto ℓ1, that is,

∥a∥(m) = ∥J(a)∥1 for all a ∈ D(m)
1 .

Hence D(m)
1 and ℓ1 share the same geometric properties with respect to the fixed point theory of nonexpansive

mappings.
We denote by (en) the canonical basis in ℓ1, and we write (ẽn) for the corresponding canonical basis in

D(m)
1 , i.e.,

ẽn = (0, . . . , 0, 1, 0, . . . ) ∈ D(m)
1 with 1 at the n-th place.

Then we have J(ẽn) =
nm

vn
en for every n ∈N.
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2.2. Affine and nonexpansive mappings
Let (X, ∥ · ∥) be a Banach space and let C ⊂ X be a nonempty cbc subset.

Definition 2.1. A mapping T : C→ C is called

• affine if for every a, b ∈ C and every t ∈ [0, 1] we have

T
(
(1 − t)a + tb

)
= (1 − t)T(a) + tT(b).

• nonexpansive if
∥T(a) − T(b)∥ ≤ ∥a − b∥ for all a, b ∈ C.

The mapping T is said to be invariant on C if T(C) ⊂ C. We say that C has the fixed point property for
nonexpansive mappings (briefly, C has the FPP) if every nonexpansive mapping T : C→ C has a fixed point.

2.3. Approximate fixed point sequences and the Goebel–Kuczumow lemma
We start by recalling the notion of approximate fixed point sequences.

Definition 2.2. Let T : C→ C be a nonexpansive mapping on a nonempty closed, bounded and convex subset C of a
Banach space (X, ∥ · ∥). A sequence (u(n)) ⊂ C is called an approximate fixed point sequence (AFPS) for T if

lim
n→∞
∥T(u(n)) − u(n)

∥ = 0.

Given an AFPS (u(n)) for a nonexpansive mapping T : C→ C, Goebel and Kuczumow introduced in [6]
the functional

r(x) := lim sup
n→∞

∥u(n)
− x∥ (x ∈ C),

and proved the following fundamental result.

Lemma 2.3 (Goebel–Kuczumow). Let C be a nonempty closed, bounded and convex subset of a Banach space X
and let T : C→ C be nonexpansive. Suppose (u(n)) ⊂ C is an approximate fixed point sequence for T and define

r(x) := lim sup
n→∞

∥u(n)
− x∥ (x ∈ C).

Then there exists u ∈ C such that
r(x) = r(u) + ∥x − u∥ for all x ∈ C.

In particular, r(Tx) ≤ r(x) for all x ∈ C.

This lemma is the key tool in the negative direction of fixed point theory on nonreflexive spaces such as
ℓ1. Everest [4] used Lemma 2.3 in the setting of ℓ1 to construct large classes of closed, bounded and convex
subsets with the fixed point property, by combining the above representation of r with carefully chosen
approximate fixed point sequences.

Using the isometric isomorphism J : D(m)
1 → ℓ1 introduced in the previous subsection, we now state the

analogue of Goebel–Kuczumow’s lemma for D(m)
1 .

Lemma 2.4. Let C(m)
⊂ D(m)

1 be a nonempty closed, bounded and convex subset and let T : C(m)
→ C(m) be nonex-

pansive. Let (u(n)) ⊂ C(m) be an approximate fixed point sequence for T. For every w ∈ C(m), define

Q(w) = lim sup
n→∞

∥u(n)
− w∥(m).

Then there exists u ∈ C(m) such that

Q(w) = Q(u) + ∥w − u∥(m) for all w ∈ C(m).

In particular, Q(Tw) ≤ Q(w) for all w ∈ C(m).
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Proof. Set C′ := J(C(m)) ⊂ ℓ1 and define a mapping

S := J ◦ T ◦ J−1 : C′ → C′.

Since J is an isometric isomorphism, S is nonexpansive on C′ and C′ is a nonempty closed, bounded and
convex subset of ℓ1.

Let v(n) := J(u(n)) ∈ C′ for each n. Then

∥S(v(n)) − v(n)
∥1 = ∥J(T(u(n))) − J(u(n))∥1 = ∥T(u(n)) − u(n)

∥
(m)
−−−−→
n→∞

0,

so (v(n)) is an approximate fixed point sequence for S on C′.
Define

r(z) := lim sup
n→∞

∥v(n)
− z∥1, z ∈ C′.

By Lemma 2.3 there exists v ∈ C′ such that

r(z) = r(v) + ∥z − v∥1 for all z ∈ C′.

Now put u := J−1(v) ∈ C(m). For any w ∈ C(m) we have z = J(w) ∈ C′, and

Q(w) = lim sup
n→∞

∥u(n)
− w∥(m) = lim sup

n→∞
∥J(u(n)) − J(w)∥1

= r(J(w)) = r(v) + ∥J(w) − v∥1
= r(v) + ∥J(w) − J(u)∥1 = r(v) + ∥w − u∥(m).

Since
Q(u) = lim sup

n→∞
∥u(n)

− u∥(m) = lim sup
n→∞

∥J(u(n)) − J(u)∥1 = r(v),

we obtain
Q(w) = Q(u) + ∥w − u∥(m) (w ∈ C(m)),

as claimed. The inequality Q(Tw) ≤ Q(w) follows by applying the same argument to T(w) and using the
nonexpansiveness of T.

3. Main results

In this section we obtain large classes of closed, bounded and convex subsets of the Köthe–Toeplitz dual
space D(m)

1 which enjoy the fixed point property for nonexpansive mappings. The construction is formulated
directly in D(m)

1 by means of a carefully chosen sequence ( fn), and the proof relies on the Goebel–Kuczumow
lemma in the form of Lemma 2.4.

3.1. A first large class in D(m)
1

Throughout this subsection we fix m ∈N and a sequence of nonzero real numbers v = (vk). Recall that

D(m)
1 =

{
a = (ak) :

∞∑
k=1

km
|ak|

|vk|
< ∞
}
, ∥a∥(m) =

∞∑
k=1

km
|ak|

|vk|
,

and that the canonical unit vectors in D(m)
1 are denoted by ẽk (with a single 1 at the k-th coordinate).

Let t ∈ (0, 1) be fixed. We define a sequence ( fn) ⊂ D(m)
1 by

f1 := t
v1

1m ẽ1, fk :=
vk

km ẽk (k ≥ 2).
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A direct computation using the norm formula shows that

∥ f1∥(m) = t, ∥ fk∥(m) = 1 for all k ≥ 2.

Thus ( fn) is a normalized sequence in D(m)
1 with a distinguished first element of strictly smaller norm.

We now consider the closed convex hull of ( fn):

E(m)
t :=

{ ∞∑
n=1

αn fn : αn ≥ 0,
∞∑

n=1

αn = 1
}
,

where the series converges in the norm ∥ · ∥(m). Since each fn ∈ D(m)
1 , and the coefficients (αn) are nonnegative

and sum to 1, the space E(m)
t is a nonempty convex subset of D(m)

1 . Moreover, the norm estimates ∥ f1∥(m) = t
and ∥ fk∥(m) = 1 for k ≥ 2 immediately imply that E(m)

t is bounded. Closedness follows from the completeness
of D(m)

1 and the fact that we take all norm-convergent convex combinations of ( fn). Hence E(m)
t is a nonempty

closed, bounded and convex (cbc) subset of D(m)
1 .

Our first main theorem shows that this very simple class already has the fixed point property.

Theorem 3.1. Let t ∈ (0, 1) and let E(m)
t ⊂ D(m)

1 be the cbc subset defined above. Then every nonexpansive mapping

T : E(m)
t → E(m)

t

has a fixed point. In other words, E(m)
t has the fixed point property for nonexpansive mappings.

Proof. Let T : E(m)
t → E(m)

t be nonexpansive. By a standard argument (see, for instance, the construction
of approximate fixed point sequences in [5]), there exists an approximate fixed point sequence (AFPS)
(u(n)) ⊂ E(m)

t , that is,
lim
n→∞
∥T(u(n)) − u(n)

∥
(m) = 0.

Define
Q(w) := lim sup

n→∞
∥u(n)

− w∥(m), w ∈ E(m)
t .

By Lemma 2.4 (Goebel–Kuczumow lemma transported to D(m)
1 ), there exists u ∈ E(m)

t such that

Q(w) = Q(u) + ∥w − u∥(m) for all w ∈ E(m)
t . (3.1)

In particular, nonexpansiveness of T implies

Q(Tw) ≤ Q(w) (w ∈ E(m)
t ),

and hence, using (3.1),

Q(u) + ∥Tw − u∥(m) = Q(Tw) ≤ Q(w) = Q(u) + ∥w − u∥(m). (3.2)

We now distinguish two cases.

Case 1. Tu = u. Then u is a fixed point of T and we are done.

Case 2. Tu , u. In this case we use the special structure of E(m)
t . Every element w ∈ E(m)

t can be written as

w =
∞∑

k=1

αk fk, αk ≥ 0,
∞∑

k=1

αk = 1.
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In particular, there exists a representation

u =
∞∑

k=1

γk fk, γk ≥ 0,
∞∑

k=1

γk = 1.

Let w ∈ E(m)
t be arbitrary and write

w =
∞∑

k=1

tk fk, tk ≥ 0,
∞∑

k=1

tk = 1.

Set
ak := tk − γk, k ∈N.

Then we have the “mass balance”
∞∑

k=1

ak =

∞∑
k=1

tk −

∞∑
k=1

γk = 1 − 1 = 0,

and

w − u =
∞∑

k=1

ak fk.

Because the vectors fk have disjoint supports and are scalar multiples of the canonical basis vectors, the
norm of w − u is easily computed. Indeed,

f1 = t
v1

1m ẽ1, fk =
vk

km ẽk (k ≥ 2),

so that

w − u = a1t
v1

1m ẽ1 +

∞∑
k=2

ak
vk

km ẽk.

Using the definition of the norm ∥ · ∥(m) we obtain

∥w − u∥(m) = t|a1| +

∞∑
k=2

|ak|. (3.3)

Thus ∥w − u∥(m) depends only on the sequence (ak) via the weighted ℓ1-expression (3.3) with weight t at the
first coordinate and weight 1 at all other coordinates.

We now define the function
d(w) := ∥w − u∥(m), w ∈ E(m)

t .

By the above representation, minimizing d(w) over E(m)
t is equivalent to minimizing the functional

F(a1, a2, . . . ) = t|a1| +

∞∑
k=2

|ak|

subject to the constraints

∞∑
k=1

ak = 0, γk + ak ≥ 0 (k ∈N),
∞∑

k=1

(γk + ak) = 1.

Reduction 1: we may assume a1 ≥ 0.
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If a1 < 0, then since
∑

k≥1 ak = 0, there exists j ≥ 2 with a j > 0. Consider the new sequence (ãk) given by

ã1 := 0, ã j := a j + a1, ãk := ak (k , 1, j).

Clearly
∑

k ãk = 0, and (ãk) still corresponds to coefficients of an element of E(m)
t provided |a1| is small enough

(this can be justified rigorously by a limiting argument; see Goebel–Kuczumow [6]). Moreover,

F(ã) = t|ã1| + |ã j| +
∑
k,1, j

|ak|

= 0 + |a j + a1| +
∑
k,1, j

|ak| ≤ |a1| + |a j| +
∑
k,1, j

|ak| = F(a),

where we used the triangle inequality in R. Hence replacing (ak) with (ãk) does not increase the value of F.
Iterating this procedure if necessary, we may assume that in any minimizing sequence we have a1 ≥ 0.

Reduction 2: we may eliminate the tail (ak)k≥2.
Suppose that for a candidate minimizer (ak) we have some positive “mass” in the tail, i.e. there exists

n ≥ 2 with an > 0. Take a small δ > 0 with 0 < δ ≤ an and define

ã1 := a1 + δ, ãn := an − δ, ãk := ak (k , 1,n).

Then
∑

k ãk =
∑

k ak = 0. Moreover,

F(ã) = t|ã1| + |ãn| +
∑
k,1,n

|ak|

= t(a1 + δ) + |an − δ| +
∑
k,1,n

|ak|.

Since a1 ≥ 0 by Reduction 1 and an > 0, we may choose 0 < δ ≤ an so that

|an − δ| = an − δ,

and hence
F(ã) = ta1 + tδ + an − δ +

∑
k,1,n

|ak| = F(a) + (t − 1)δ ≤ F(a),

because t− 1 < 0. Thus transferring a small amount of mass from a positive tail coefficient an to a1 does not
increase F, and in fact strictly decreases it unless δ = 0. Repeating this operation finitely many times shows
that, in any minimizing configuration, we must have

ak ≤ 0 for all k ≥ 2.

Combining this with
∑

k ak = 0 and a1 ≥ 0, we obtain

a1 =

∞∑
k=2

(−ak) =: ξ ≥ 0,

and hence

F(a) = ta1 +

∞∑
k=2

|ak| = tξ +
∞∑

k=2

(−ak) = tξ + a1 = tξ + ξ = ξ(t + 1).

In particular, the minimal value of F is attained when all the negative mass is concentrated in a single
coordinate (say k = 2), and all the positive mass is at the first coordinate:

a1 = ξ, a2 = −ξ, ak = 0 (k ≥ 3).
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This corresponds to a point h ∈ E(m)
t with

h = (γ1 + ξ) f1 + (γ2 − ξ) f2 +
∞∑

k=3

γk fk,

and
∥h − u∥(m) = F(a) = ξ(t + 1) =: m.

Collecting the above reductions, we see that the set

Λ := {w ∈ E(m)
t : ∥w − u∥(m) = m}

of minimizers of d(w) is nonempty, closed and convex, and is contained in the finite-dimensional subspace
generated by { f1, f2}. In particular, Λ is compact in the norm topology of D(m)

1 .

Invariance of Λ.
Let w ∈ Λ. Then by definition ∥w − u∥(m) = m. Using (3.2) with this w we obtain

Q(u) + ∥Tw − u∥(m)
≤ Q(u) + ∥w − u∥(m) = Q(u) +m,

hence ∥Tw−u∥(m)
≤ m. By the definition of m as the minimal distance from u to E(m)

t , we must have equality,
i.e.

∥Tw − u∥(m) = m,

and therefore Tw ∈ Λ. Thus Λ is a nonempty compact convex subset of D(m)
1 which is invariant under T.

Conclusion.
The restriction T|Λ : Λ → Λ is nonexpansive (hence continuous) and Λ is compact and convex in the

Banach space D(m)
1 . By Schauder’s fixed point theorem, T|Λ has a fixed point, which is also a fixed point of

T in E(m)
t . This completes the proof.

Theorem 3.2 (Finite Mixed Block Fixed Point Theorem in D(m)
1 ). Let m ∈ N be fixed and let s ∈ N. Choose

coefficients t1, . . . , ts ∈ (0, 1) and let (vk) be the defining coefficient sequence of D(m)
1 . Define a sequence ( fn) ⊂ D(m)

1 by

f j := t j
v j

jm
ẽ j, 1 ≤ j ≤ s,

fn :=
vn

nm ẽn, n ≥ s + 1,

where (̃en) denotes the canonical unit vectors in D(m)
1 . Set

E(m)
s :=

{ ∞∑
n=1

αn fn : αn ≥ 0,
∞∑

n=1

αn = 1
}
.

Then every nonexpansive mapping T : E(m)
s → E(m)

s has a fixed point. In other words, E(m)
s has the fixed point property

for nonexpansive mappings.

Proof. Let T : E(m)
s → E(m)

s be nonexpansive. Choose an approximate fixed point sequence (AFPS) (u(n)) ⊂ E(m)
s

such that
∥T(u(n)) − u(n)

∥
(m)
−−−−→
n→∞

0.

Define the Goebel–Kuczumow functional

Q(w) = lim sup
n→∞

∥u(n)
− w∥(m), w ∈ E(m)

s .
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By the Goebel–Kuczumow lemma (in the form valid for D(m)
1 ), there exists a point u ∈ E(m)

s such that

Q(w) = Q(u) + ∥w − u∥(m) (w ∈ E(m)
s ). (3.4)

Write

u =
∞∑

n=1

γn fn, γn ≥ 0,
∞∑

n=1

γn = 1 − δ,

for some δ ≥ 0. If δ = 0, then u ∈ E(m)
s has full mass and (3.4) with w = Tu gives

Q(Tu) = Q(u) + ∥Tu − u∥(m)
≤ Q(u),

so ∥Tu − u∥(m) = 0 and Tu = u. Thus we may assume for the rest of the proof that δ > 0.

Step 1: Mass equation and difference representation. Let

y =
∞∑

n=1

tn fn ∈ E(m)
s , tn ≥ 0,

∞∑
n=1

tn = 1.

Define the difference coefficients
an := tn − γn, n ∈N.

Then
∞∑

n=1

an =

∞∑
n=1

tn −

∞∑
n=1

γn = 1 − (1 − δ) = δ. (3.5)

Moreover

y − u =
∞∑

n=1

an fn.

Step 2: Norm formula before reduction. Recall that the norm in D(m)
1 is given by

∥x∥(m) =

∞∑
k=1

km
|xk|

|vk|
, x = (xk) ∈ D(m)

1 .

By definition,

f j = t j
v j

jm
ẽ j, 1 ≤ j ≤ s, fn =

vn

nm ẽn, n ≥ s + 1,

so
∥ f j∥

(m) = t j, 1 ≤ j ≤ s, ∥ fn∥(m) = 1, n ≥ s + 1.

Hence

∥y − u∥(m) =

s∑
j=1

t j|a j| +

∞∑
n=s+1

|an|. (3.6)

Step 3: Tail elimination (mass transfer). Suppose that ak > 0 for some k ≥ s+ 1. Take an index j ∈ {1, . . . , s}
and choose 0 < ε ≤ ak. Consider the new coefficients

ã j := a j + ε, ãk := ak − ε, ãn := an (n , j, k).

The total mass condition (3.5) is preserved.
We compare the norms. From (3.6) we have

∥y − u∥(m) = t j|a j| + |ak| +
∑
n, j,k

µn|an|,
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where µn = tn for n ≤ s and µn = 1 for n ≥ s + 1. Similarly,

∥ỹ − u∥(m) = t j|ã j| + |ãk| +
∑
n, j,k

µn|an|.

Since ak > 0 and 0 < ε ≤ ak, we have

|ak| − |ãk| = ak − (ak − ε) = ε.

For the j-th coordinate we have
|ã j| − |a j| ≤ |ã j − a j| = ε,

and thus
t j|ã j| − t j|a j| ≤ t jε.

Therefore
∥ỹ − u∥(m)

− ∥y − u∥(m)
≤ t jε − ε = ε(t j − 1) < 0,

since t j ∈ (0, 1). Hence transferring a positive amount of mass from any tail coordinate k ≥ s + 1 to a block
index j ≤ s strictly decreases the norm.

By iterating this procedure we may assume, without loss of generality, that

an = 0 (n ≥ s + 1), a j ≥ 0 (1 ≤ j ≤ s),
s∑

j=1

a j = δ. (3.7)

Step 4: Norm as a linear functional on a simplex. Under the reduced form (3.7), (3.6) reduces to

∥y − u∥(m) =

s∑
j=1

t ja j. (3.8)

Thus ∥y − u∥(m) is a positive linear functional on the simplex

∆s(δ) :=
{
(a1, . . . , as) ∈ [0,∞)s :

s∑
j=1

a j = δ
}
.

Let
t∗ := min{t1, . . . , ts}, I∗ := { j ∈ {1, . . . , s} : t j = t∗}.

Since the minimum of a linear functional on a simplex is attained at an extreme point, we obtain

min{∥y − u∥(m) : y ∈ E(m)
s } = δt∗. (3.9)

The set of minimizers in the coefficient space is then{
(a1, . . . , as) ∈ ∆s(δ) : a j = 0 if j < I∗

}
,

so the set of minimizers in E(m)
s is

Λ :=
{
w =

∞∑
n=1

θn fn : θ j = γ j + a j, a j ≥ 0, a j = 0 if j < I∗,
∑
j∈I∗

a j = δ
}
.

Thus Λ is nonempty, convex and weak∗-compact in D(m)
1 . Moreover, Λ is a singleton, a line segment, or a

higher-dimensional simplex depending on the cardinality of I∗.
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Step 5: Balancing family inside Λ. Fix any j ∈ I∗. We construct a balancing path (h( j)
β )β∈[0,1] inside Λ as

follows. Set

h( j)
β := u + (1 − β)δ f j +

βδ

|I∗| − 1

∑
i∈I∗
i, j

fi, 0 ≤ β ≤ 1.

Then

h( j)
β − u = (1 − β)δ f j +

βδ

|I∗| − 1

∑
i∈I∗
i, j

fi.

Using ∥ f j∥
(m) = t j and ∥ fi∥(m) = ti we obtain

∥h( j)
β − u∥(m) = (1 − β)δt j +

βδ

|I∗| − 1

∑
i∈I∗
i, j

ti.

Since all i ∈ I∗ satisfy ti = t∗ and also t j = t∗, this simplifies to

∥h( j)
β − u∥(m) = (1 − β)δt∗ + βδt∗ = δt∗.

Together with (3.9), this shows that each h( j)
β is a minimizer and hence lies in Λ.

Step 6: T-invariance of Λ. Take an arbitrary w ∈ Λ. From (3.4) and the definition of Λ, we have

Q(w) = Q(u) + ∥w − u∥(m) = Q(u) + δt∗.

Since T is nonexpansive and (u(n)) is an AFPS, the Goebel–Kuczumow lemma implies that

Q(Tw) ≤ Q(w).

On the other hand, (3.4) applied to Tw gives

Q(Tw) = Q(u) + ∥Tw − u∥(m).

Combining the last two displays and using (3.9), we obtain

Q(u) + ∥Tw − u∥(m) = Q(Tw) ≤ Q(u) + δt∗,

so
∥Tw − u∥(m)

≤ δt∗.

By the minimality of δt∗ this forces ∥Tw − u∥(m) = δt∗ and hence Tw ∈ Λ. Thus

T(Λ) ⊂ Λ.

Step 7: Existence of a fixed point. If Λ is a singleton, say Λ = {w0}, then Tw0 = w0 and we are done. If Λ
contains more than one point, then Λ is a nonempty, convex, weak∗-compact subset of D(m)

1 and T : Λ→ Λ
is nonexpansive (in particular, continuous). By Schauder’s fixed point theorem, T has a fixed point in Λ.

In both cases, T has a fixed point in E(m)
s , and the proof is complete.
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4. Corollaries and Further Remarks

4.1. Two–parameter and multi–parameter consequences

The mixed block fixed point theorem yields several immediate consequences. We record three of them
for later use.

Corollary 1 (Two–parameter mixed block). Let

f1 := t
v1

1m ẽ1, f2 := r
v2

2m ẽ2,

with t, r ∈ (0, 1), and for n ≥ 3 define

fn :=
vn

nm ẽn.

Let

E(m) := co{ fn : n ∈N} ⊂ D(m)
1 .

Then every nonexpansive mapping T : E(m)
→ E(m) has a fixed point.

Proof. This is the special case of the main theorem with s = 2 and block {1, 2}.

Corollary 2 (Uniform coefficient block). Let s ∈N and choose a single coefficient t ∈ (0, 1). Define

f j := t
v j

jm
ẽ j (1 ≤ j ≤ s), fn :=

vn

nm ẽn (n > s),

and set

E(m)
s := co{ fn : n ∈N}.

Then E(m)
s has the fixed point property for nonexpansive mappings.

Proof. This is the main theorem with t j = t for 1 ≤ j ≤ s.

Corollary 3 (Arbitrary finite block of coefficients). Let s ∈N and choose arbitrary coefficients

0 < t j < 1, 1 ≤ j ≤ s.

Define

f j := t j
v j

jm
ẽ j, (1 ≤ j ≤ s), fn :=

vn

nm ẽn (n > s).

Then

E(m) := co{ fn : n ∈N}

has the fixed point property.

Proof. Immediate from the mixed block theorem.
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4.2. Remarks on infinite blocks and Everest–type constructions

The previous results rely crucially on the fact that only finitely many coordinates carry a coefficient
strictly less than 1. Several infinite generalizations are possible, but require additional geometric control.
We collect here three remarks that clarify the scope of the method.

Remark 1 (Infinite block with tn ↓ 0). Suppose that for infinitely many n we have 0 < tn < 1 and tn → 0. Define

fn := tn
vn

nm ẽn (n ∈N), E(m) := co{ fn}.

If a weak∗ cluster point u of an AFPS satisfies

∞∑
n=1

γn = 1 − δ (δ > 0),

then the mass δ can always be concentrated into a sufficiently large finite block where tn is sufficiently small.
Consequently the balancing argument carries over on that finite block. A full infinite–dimensional theorem is possible,
but the statement is technically involved and requires additional compactness assumptions.

Remark 4.1 (Infinite constant block and failure of the FPP). In contrast with the finite mixed block situation
of Theorem 3.2, the case where we put the same coefficient t ∈ (0, 1) in front of every basis vector does not enjoy the
fixed point property.

More precisely, fix t ∈ (0, 1) and define

fn := t
vn

nm ẽn, n ∈N,

and let

E(m)
∞ :=

{ ∞∑
n=1

αn fn : αn ≥ 0,
∞∑

n=1

αn = 1
}
⊂ D(m)

1 .

Then E(m)
∞ is a nonempty closed, bounded and convex subset of D(m)

1 , but it fails to have the fixed point property for
nonexpansive mappings.

Proof. Consider the isometric isomorphism J : D(m)
1 → ℓ1 introduced in the preliminaries. Since

J( fn) = ten, n ∈N,

we obtain

Ct := J
(
E(m)
∞

)
=
{
x = (xn) ∈ ℓ1 : xn ≥ 0 for all n,

∞∑
n=1

xn = t
}
.

Thus Ct is exactly the set of all nonnegative elements of ℓ1 having ℓ1–norm equal to t; in particular it is closed,
bounded and convex.

Define the (right) shift operator R : ℓ1 → ℓ1 by

R(x)1 := 0, R(x)n+1 := xn (n ≥ 1), x = (xn) ∈ ℓ1.

Then R is an isometry, hence nonexpansive, and for every x ∈ Ct we have

R(x)n ≥ 0 for all n,
∞∑

n=1

R(x)n =

∞∑
n=1

xn = t,

so R(Ct) ⊂ Ct; that is, R is invariant on Ct.
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We now show that R has no fixed point in Ct. If R(x) = x for some x = (xn) ∈ Ct, then from the first coordinate
we get x1 = R(x)1 = 0. Inductively,

x2 = R(x)2 = x1 = 0, x3 = R(x)3 = x2 = 0, . . . ,

so xn = 0 for all n ∈ N. This contradicts the fact that x ∈ Ct must satisfy
∑
∞

n=1 xn = t > 0. Hence R has no fixed
point in Ct.

Finally, define
T := J−1

◦ R ◦ J : E(m)
∞ → E(m)

∞ .

Since J is an isometric isomorphism, T is nonexpansive, T(E(m)
∞ ) ⊂ E(m)

∞ , and T has a fixed point in E(m)
∞ if and only if

R has a fixed point in Ct. As we have just seen, the latter is impossible. Therefore E(m)
∞ fails to have the fixed point

property for nonexpansive mappings.

Remark 2 (Everest–type double–shift generalizations). Constructions of the form

fn := tn
vn

nm ẽn + rn
vn+1

(n + 1)m ẽn+1

generalize the classical Everest pattern en + en+1. The mass transfer must then be performed simultaneously across
two neighboring coordinates. The fixed point property can still be ensured under mild regularity conditions on (tn)
and (rn), but the proof becomes a two–dimensional balancing argument. This case naturally belongs to a more general
theory and will be developed elsewhere.

5. Conclusion

In this paper we investigated the fixed point property for nonexpansive mappings on large classes
of closed, bounded and convex subsets of the Köthe–Toeplitz dual space D(m)

1 , which is isometrically
isomorphic to the classical space ℓ1. By transporting the Goebel–Kuczumow lemma through the isometry
J : D(m)

1 → ℓ1 we obtained a representation formula for the functional

Q(w) = lim sup
n→∞

∥u(n)
− w∥(m), w ∈ D(m)

1 ,

which is adapted to the geometry of D(m)
1 . This representation allowed us to combine approximate fixed

point sequences with a precise “mass–transfer” analysis on suitable convex sets generated by the canonical
basis of D(m)

1 .
Our first main result shows that already a very simple perturbation of the canonical basis — introducing

a single coefficient t ∈ (0, 1) in front of one basis vector — is sufficient to restore the fixed point property on
the corresponding convex hull, even though the ambient space ℓ1 itself fails the fixed point property. We
then extended this to arbitrary finite mixed blocks of coefficients, obtaining a flexible class of sets

E(m) = co{ fn : n ∈N} ⊂ D(m)
1

on which every nonexpansive self–mapping admits a fixed point. The proofs reveal a clear geometric
mechanism: mass can be transferred toward coordinates with smaller norm contribution, and the Goebel–
Kuczumow functional forces every nonexpansive mapping to leave invariant a weak∗ compact convex
subset, where Schauder’s theorem yields a fixed point.

We also observed that this phenomenon is genuinely finite–dimensional along the basis: in the infinite
constant–block case, where the same coefficient t ∈ (0, 1) is placed in front of every basis vector, we
constructed a shift–type nonexpansive mapping without fixed points, showing that the fixed point property
fails. This exhibits the sharpness of the finite mixed block condition.

Finally, we discussed several directions in which the present approach can be extended, including
decreasing infinite sequences of coefficients, Everest–type double–shift constructions and possible gener-
alizations to other Köthe sequence spaces. These problems lie beyond the scope of the present article and
will be investigated in future work.
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