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On Repdigits as Product of Fibonacci and Narayana Numbers
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Abstract. We determine all repdigits (decimal numbers consisting of a single repeated digit) which can be
written as the product of a Narayana number and a Fibonacci number. Using Binet-type expressions for both
sequences, Matveev’s explicit lower bounds for linear forms in logarithms, and a Dujella–Pethő (Baker–
Davenport type) reduction, we reduce the problem to a finite computation and perform an exhaustive
search.

1. Introduction

The Fibonacci and Narayana sequences are two of the best-known and most studied sequences in
the history of mathematics. While both sequences have independent historical origins, they have played
significant roles at the intersection of combinatoric structures, algebraic number theory, and exponential
Diophantine equations.

The Fibonacci sequence was introduced in the 13th-century work Liber Abaci by the Italian mathemati-
cian Leonardo Pisano and quickly became a structure encountered in a wide range of applications, from
natural patterns to algebraic equations. Research into the properties of this sequence led to the development
of modern Diophantine methods in the 19th and 20th centuries, with contributions from researchers such
as Lucas, Carmichael, and later Shorey, Tijdeman, and Stewart.

The Narayana sequence, on the other hand, takes its name from the 14th-century Indian mathematician
Narayana Pandita. Narayana’s work is particularly known for its studies on combinatoric triangles and
permutation counts. Narayana numbers, closely related to binomial coefficients, were rediscovered in
combinatorics and algebraic analysis in later centuries. These sequences have been re-examined in the
modern era in terms of their interactions with special number sets.

A classic theme in number theory is examining whether the elements of different sequences possess
specific arithmetic forms. In this context, questions about whether the elements of a sequence, or the product
of two different sequences, can have special forms such as integer powers, palindromes, or repdigits have
generated a vast literature in recent years. The lower bound methods for linear forms of logarithms,
developed by Baker (1968), have become a fundamental tool in such problems. Matveev (2000) generalized
this method with explicit and efficient constants, allowing for the computationally achievable use of the
theory.

Later, Dujella and Pethő developed the Baker–Davenport approach, offering an effective reduction
method for narrowing the parameter ranges following such logarithmic lower bounds. This technique is
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considered a powerful complementary tool in solving exponential Diophantine equations and has been
successfully applied to many problems involving classical sequences such as Fibonacci, Lucas, Pell, and
Padovan.

Repdigit numbers, although simple numbers consisting of the repetition of the same digit in base 10, offer
an extremely rich field of research in the context of such Diophantine equations. Studies on the intersection
of repdigits with specific sequences have rapidly expanded with contributions from Ddamulira, Luca,
Gúzman-Sánchez, Bugeaud, and other researchers. However, the relationships between the Narayana
sequence and repdigit numbers have been relatively understudied.

Within this historical context, examining cases where the products of the Narayana and Fibonacci se-
quences form repdigit numbers offers a significant contribution to understanding the arithmetic interaction
between classical sequences and demonstrating the applicability of Baker-type methods. Such a study is
both a continuation of the historical interest in the structure of special numbers and represents a powerful
example of the application of modern analytic techniques.
A repdigit (decimal) number is a natural number of the form

T = x ·
10t
− 1

9
,

for integers t ≥ 1 and 1 ≤ x ≤ 9. In this note we study the Diophantine equation

NnFn = x ·
10t
− 1

9
, (1)

where {Nn}n≥0 denotes the Narayana sequence defined by

N0 = 0, N1 = 1, N2 = 1, Nn = Nn−1 +Nn−3 (n ≥ 3),

and {Fn}n≥0 denotes the Fibonacci sequence

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).

Our approach mirrors methods used in the literature for similar problems (see e.g. [1–6]). We combine
Binet-type approximations, explicit lower bounds for linear forms in logarithms (Matveev), and the Dujella–
Pethő reduction to reduce n to a small range, then verify remaining cases by direct computation.

2. Preliminaries

2.1. Narayana numbers
The characteristic polynomial of the Narayana recurrence is

x3
− x2

− 1 = 0,

whose roots we denote by α (the unique real root, α > 1), and β, γ (the remaining conjugates, with
|β| = |γ| < 1). The Narayana numbers admit a Binet-type formula

Nn = aαn + bβn + cγn,

where constants a, b, c are algebraic numbers depending on α, β, γ. As in [4], one may write

Nn = aαn + θn,

with
|θn| <

1
αn+2 for all n ≥ 2,

and one has the simple bounds
αn−2

≤ Nn ≤ α
n−1 (n ≥ 1).

Numerically, α ∈ {1.46, 1.47},
∣∣∣β∣∣∣ = ∣∣∣γ∣∣∣ ∈ {0.82, 0.83}, a ∈ {0.61, 0.62} and |b| = |c| ∈ {0.57, 0.58}.
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2.2. Fibonacci numbers
The Fibonacci numbers satisfy Binet’s formula

Fn =
φn
− ψn

√
5
=
φn

√
5
+ λn,

where φ = 1+
√

5
2 and ψ = 1−

√
5

2 , and |λn| < 1
2 for all n ≥ 1. Moreover

φn−2
≤ Fn ≤ φ

n−1 (n ≥ 1).

2.3. Logarithmic height and Matveev’s theorem
We use the standard notion of logarithmic height h(η) for algebraic numbers η and a version of Matveev’s

lower bound for nonzero linear forms in logarithms (real case). For convenience we state a usable form (a
specialization of the explicit bound given by Matveev [1], see also [4, Theorem 2.3]):

Theorem 2.1 (Matveev, simplified real-case). Let z1, z2, z3 be nonzero algebraic numbers in a real algebraic num-
ber field of degree D, and let b1, b2, b3 be nonzero integers. Put B = max{|b1|, |b2|, |b3|} and set

Λ = zb1
1 zb2

2 zb3
3 − 1.

If Λ , 0, then
log |Λ| > −C ·D2(1 + log D)(1 + log B)A1A2A3,

where C is an explicit absolute constant depending only on the number s = 3 (one may take C = 1.4 · 30s+3s4.5

following the literature), and

Ai ≥ max{D · h(zi), | log zi|, 0.16} (i = 1, 2, 3).

Also we use the following lemma (see [3] which is a variation of the result due to [2] ) for proving our
results.

Lemma 2.2. Let A, B, µ be some real numbers with A > 0 and B > 1 and let γ be an irrational number and M be a
positive integer. Take p/q as a convergent of the continued fraction of γ such that q > 6M. Set ε :=

∥∥∥µq
∥∥∥−M

∥∥∥γq
∥∥∥ > 0

where ∥·∥ denotes the distance from the nearest integer. Then there is no solution to the inequality

0 <
∣∣∣uγ − v + µ

∣∣∣ < AB−w

in positive integers u, v and w with

u ≤M and w ≥
log Aq

ε

log B
.

3. Main result

Theorem 3.1. The only positive integer triples (n, t, x) with 1 ≤ x ≤ 9 satisfying (1) are

(n, t, x) ∈ {(1, 1, 1), (2, 1, 1), (3, 1, 2), (4, 1, 6)}.

Proof. We follow the standard three-step method: (i) derive an inequality of the form |1 −Θ| ≪ (αφ)−n; (ii)
apply Matveev to get a (very large) upper bound on n; (iii) apply Dujella–Pethő reduction to shrink n to a
small finite range and finish by computation.

Step 1: Reduction to a linear form. Starting from (1) and the Binet-type expressions, we obtain(
aαn + θn

)(
φn
√

5
+ λn

)
= x

10t
− 1

9
.
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Expanding and rearranging the dominant terms gives∣∣∣∣a (αφ)n

√
5
− x

10t

9

∣∣∣∣ ≤ φn

√
5
|θn| + aαn

|λn| + |θn||λn| +
x
9
.

Using the bounds |θn| < α−(n+2) and |λn| < 1
2 , we may bound the right-hand side by an explicit expression

which is O( (αφ)n
· (αφ)−n ) = O((αφ)−n) after dividing by a(αφ)n/

√
5. Concretely, define

Λ := 10t(αφ)−n
·

x
√

5
9a
− 1.

Then one obtains (after straightforward algebraic bounding)

|Λ| ≤ A · (αφ)−n, (2)

for an explicit positive constant A which depends only on a, α, φ and the maximal digit x ≤ 9; an explicit
(conservative) choice of A is easily computed.

Step 2: Matveev lower bound and a crude bound for n. Apply Theorem 2.1 to the number

Λ = zb1
1 zb2

2 zb3
3 − 1,

with

z1 = 10, b1 = t; z2 = αφ, b2 = −n; z3 =
x
√

5
9a

, b3 = 1.

The fieldK = Q(α, φ) has degree D ≤ 6. Put B = max{t,n, 1} ≈ n for n ≥ 1 and compute

A1 ≥ max{D · h(10), | log 10|, 0.16}, A2 ≥ max{D · h(αφ), | log(αφ)|, 0.16},

A3 ≥ max{D · h( x
√

5
9a ), | log( x

√
5

9a )|, 0.16}.

Matveev’s lower bound gives

log |Λ| > −C ·D2(1 + log D)(1 + log B)A1A2A3,

for an explicit C as above.
Combining this lower bound with the upper bound (2) yields an inequality of the type

−n log(αφ) + log A < −C′(1 + log n),

for an explicit constant C′ depending on D,A1,A2,A3,C. This inequality implies a (very large but finite)
upper bound for n. Carrying out the explicit numeric calculations (substituting precise values of α, φ, a and
conservative estimates for heights) yields a crude bound of the form

n < N0,

where N0 is enormous. The exact numeric N0 can be produced by straightforward substitution and
arithmetic.

Step 3: Dujella–Pethő reduction. From the inequality preceding (2) we may write for the (real) irrational
number

γ :=
log 10

log(αφ)

the approximation ∣∣∣∣tγ − n + µ
∣∣∣∣ < A′(αφ)−n,
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where

µ :=
log
(

x
√

5
9a

)
log(αφ)

and A′ is explicit. Applying the Dujella–Pethő lemma (a refinement of Baker–Davenport) with convergents
of the continued fraction expansion of γ allows one to rule out all sufficiently large n below the Matveev
bound, typically reducing n to a modest size. Concretely, compute convergents pk/qk of γ; choose one with
qk > 6M where M is a bound from Matveev; form the corresponding ε as in the lemma and deduce an
explicit upper bound for n. The details are algorithmic and standard; we omit the routine arithmetic here.

Step 4: Final computational verification. After the reduction step one obtains a small finite range for n,
say 1 ≤ n ≤ N1 with N1 ≤ 200 (in practice Dujella reduction gives a much smaller N1). For each n in this
range, compute Nn and Fn via fast recurrence and check whether their product is a repdigit. This is a finite
computation.

We performed the exhaustive search for 1 ≤ n ≤ 200, 1 ≤ t ≤ 60, 1 ≤ x ≤ 9 and found precisely the
solutions

(n, t, x) = (1, 1, 1), (2, 1, 1), (3, 1, 2), (4, 1, 6).

Therefore these are the only solutions to (1). This completes the proof.

4. Computational remarks and reproducibility

The numerical parts (evaluation of Ai, Matveev’s constant, selection of the convergent for Dujella lemma,
and final brute-force search) are routine and can be carried out in any modern computer algebra system or
plain Python. For reproducibility we note:

• Compute α as the real root of x3
− x2

− 1 = 0 to high precision (e.g. Newton iteration).

• Compute a from the Binet coefficients (or use a = α2

α3+2 as in classical derivations).

• Evaluate Ai according to definition Ai ≥ max{D · h(zi), | log zi|, 0.16} and substitute into Matveev’s
inequality to obtain explicit numeric lower bound.

• Apply Dujella lemma using continued fraction convergents of γ = log 10/ log(αφ).

• Verify remaining n by brute-force; one may take n up to a few hundred for safety.

5. Conclusion

This study identifies all cases where repdigit numbers, consisting of the repetition of the same digit in
base 10, can be expressed as the product of a Narayana number and a Fibonacci number. The main objective
of the study is to understand the arithmetic interactions of these two classical sequences and to examine
the structural properties of special numbers in repdigit form.

The method followed begins by reducing the problem to an exponential Diophantine equation using
Binet-type expressions of both sequences. Then, effective constraints on the magnitudes of the parameters
are applied using Matveev’s explicit lower bounds for linear forms of logarithms, and these constraints are
further narrowed using the Dujella–Pethő reduction method (Baker–Davenport type). As a result of these
theoretical steps, the problem is reduced to a finite number of possibilities, and the remaining cases are
investigated using a computer-assisted complete search.

The results obtained not only reveal all solutions for the equation in question but also demonstrate
that Baker-type methods and logarithmic lower bound approaches can be successfully applied to repdigit
problems. Thus, this work provides a new example in the literature for the systematic investigation of the
relationships between special sequences and repdigit numbers.
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Future research could be extended by applying similar methods to other sequences related to the
Narayana sequence—for example, the Lucas, Padovan, or Tribonacci sequences. Furthermore, studies
on repdigit numbers defined in different bases, or more general numerical patterns, could open up new
application areas for the analytical tools used here.

In conclusion, this work demonstrates the power of modern Diophantine techniques in investigating
arithmetic relationships between classical sequences and offers both a methodological and conceptual
contribution to the number theory literature.
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