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Gaussian and Mean Curvatures of the Surface Obtained Along T-Pedal
Curve of A Given Curve

Filiz ERTEM KAYAa

aNiğde Ömer Halisdemir Üniversity, Science Faculty,Department of Mathematics, Niğde, Türkiye

Abstract. In this study, the surface was constructed using Frenet vectors along a curve known as T-pedal
curve, which is geometric location of the perpendicular projection points from a point not on the curve
onto the tangent vector of any curve. Then surfaces containing the T-pedal curve were characterized using
marching-scale functions by employing Frenet vectors along the T-pedal curve. Finally, the geometric
properties, Gaussian and Mean curvatures of these obtained surfaces are calculated.

1. Introduction

Curve theory and surface curvatures are extensively in differential geometry textbooks. Many studies
exist on the problem of finding surfaces, particularly on what is called the inverse problem ([5-7], [10], [12]).
The geometric locus of the perpendicular projection points from a point not on the curve onto the tangent
(or principal normal) vector of a curve is called a pedal (or contra-pedal) curve. Many studies exist on pedal
curves [1-3], [8], [11], [13-15], [17-18]). In this study, surfaces containing the T-pedal curve were investigated
under different marching-scale functions. Geometric properties, Gaussian and Mean curvatures of these
surfaces were determined.

2. Preliminaries

If the curve α(t) is given with arbitrary parameters, the Frenet vectors T,N,B and curvatures κ, τ then
Frenet formulas are shown as following relations, respectively:

T =
α′

∥α′∥

N = B ∧ T =
(α′ ∧ α′′) ∧ α′

∥α′ ∧ α′′∥ ∥α′∥

B =
α′ ∧ α′′

∥α′ ∧ α′′∥

(1)
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The curvature κ and torsion τ are given by:

κ =
∥α′ ∧ α′′∥

∥α′∥3

τ =
det (α′, α′′, α′′′)

∥α′ ∧ α′′∥2

(2)

T′ = vκN
N′ = v(−κT + τB)
B′ = −vτN

(3)

where v = ||α′(t)||, ([4], [9]).

Let Mα ⊂ E3 be a surface and n̂ be a normal vector field of Mα.Formulas of the surface’s Gauss curva-
ture KMα and mean curvature HMα are given by following equalities ([4], [16] ):

KMα =
ln−m2

EG − F2 and HMα =
En + Gl − 2Fm

2 (EG − F2)
(4)

We give the following relations with about the expressions l,m,n,E,F,G respectively ([4], [9], [16]).

l =< n̂,Mss >

m =< n̂,Mts >

n =< n̂,Mtt >

E =<Ms,Ms >

F =<Ms,Mt >

G =<Mt,Mt >

(5)

3. Gauss and Mean Curvatures of T-Pedal Curves

Theorem 3.1. ([21]) Let α(s) be a curve non-zero unit speed curve and Mα be the surface of curve α(s). New surfaces
belonged to curve α(s) are obtained with each different selection of the marching-scale functions o, p and r from class
Ck. The equation of this surface Mα is given by following equality:

Mα(s, t) = α(s) + o(s, t)T(s) + p(s, t)N(s) + r(s, t)B(s) (6)

where L1 ≤ s ≤ L2,T1 ≤ t ≤ T2.

Definition 3.2. Let Tα denote the tangent vector of a regular curve in E2. The geometric locus of the perpendicular
projection of points onto a tangent vector from a given point P ∈ E2 that is not on the curve is called the pedal curve
of the curve α ([11], [17], [20]).

Theorem 3.3. (([17], [20]) The pedal curve of a regular curve α according to the point P ∈ E2 is given by the
following equality:

αT(t) = α(t) − ⟨P − α(t),Tα⟩Tα (7)

Definition 3.4. Let T be the tangent vector of a given regular curve in E3 The geometric locus of the perpendicular
projection of points onto a tangent vector from a given point P ∈ E3 that is not on the curve is called the T − Pedal
curve α according to P ([17]).
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Theorem 3.5. ([17], [20]) The equation of T − Pedal curve of a regular curve α is as follows:

αT(t) = α(t) − ⟨P − α(t),T⟩T (8)

If the point P is taking as origin, then the equation of T − Pedal curve of a regular curve is obtained by following
equality ([17]):

αT(t) = α(t) − ⟨α(t),T⟩T (9)

Theorem 3.6. Let αT(t) be T − Pedal curve of the curve α. Let T1,N1,B1 denote Frenet vectors and κ1, τ1 denote
curvatures of curve αT(t). Also, let take f , 1 and h as deviation functions. The equations of Gauss curvature KMαT
and mean curvature HMαT

belonged to the surface M of Curve αT(t) are calculated as follows:

KMαT
=

∣∣∣∣∣(y1)t (z1)t
y1 z1

∣∣∣∣∣ ft +
∣∣∣∣∣(z1)t (x1)t

z1 x1

∣∣∣∣∣ 1t +

∣∣∣∣∣(x1)t (y1)t
x1 y1

∣∣∣∣∣ ht

(x2
1 + y2

1 + z2
1)( f 2

t + 1
2
t + h2

t ) − (x1 ft + y11t + z1ht)2
(10)

HMα =

( f 2
t + 1

2
t + h2

t )
(
x2

∣∣∣∣∣ht 1t
z1 y1

∣∣∣∣∣ + y2

∣∣∣∣∣ ft ht
x1 z1

∣∣∣∣∣ + z2

∣∣∣∣∣1t ft
y1 x1

∣∣∣∣∣)
− (x1 ft + y11t + z1ht)

(
(x1)t

∣∣∣∣∣ht 1t
z1 y1

∣∣∣∣∣ + (y1)t

∣∣∣∣∣ ft ht
x1 z1

∣∣∣∣∣ + (z1)t

∣∣∣∣∣1t ft
y1 x1

∣∣∣∣∣)(
(x2

1 + y2
1 + z2

1)( f 2
t + 1

2
t + h2

t ) − (x1 ft + y11t + z1ht)2
)

×

√∣∣∣∣∣ht 1t
z1 y1

∣∣∣∣∣2 + ∣∣∣∣∣ ft ht
x1 z1

∣∣∣∣∣2 + ∣∣∣∣∣1t ft
y1 x1

∣∣∣∣∣2
(11)

where the coefficients are as follows:
x1 = µ + fs − µ 1κ1,

y1 = µ fκ1 + 1s − µ hτ1,

z1 = µ 1τ1 + hs.

(12)

and
x2 = (x1)s − µκ1y1,

y2 = µ x1κ1
(
y1

)
s − µ z1τ1,

z2 = µ y1τ1 + (z1)s .

(13)

Proof. We know that surfaces belonged the curve αt(t) can be written as follows:

M(s, t) = αt + f (s, t)T1(s) + 1(s, t)N1(s) + h(s, t)B1(s) (14)

New surfaces are obtained that pass through the T − Pedal curve αt(t) with each different selection of the
marching-scale functions f , 1 and h from class Ck.

Since the T − pedal curve αt(t) is not unit speed, we should take T1 =
α′T
||α′T ||

. From here, α′T = T1||α′T ||.
Let take ||α′T || = µ. So, we have following equalities:

T1 = µκ1

N1 = µ(−κ1T1 + τ1B1)
B1 = µτ1N1

(15)
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By taking the derivatives of the surface

Ms = (α′T + fs(s, t)T1(s) + f T′1(s, t) + 1s(s, t)N1(s) + 1(s, t)N′1(s) + hs(s, tB1(s) + h(s, t)B′1(s)) (16)

By substituting the relations in (12) into (16) and simplifying, the following expression is obtained:

Ms = (µ + fs(s, t) − µ1κ1)T1(s) + (µ fκ1 + 1s − µhτ1)N1(S) + (µ1τ1 + hs)B1(s). (17)
Moreover, we compute the partial derivatives of the surface as follows:

Ms = x1T1 + y1N1 + z1B1,

Mt = ftT1 + 1tN1 + z1B1

Mss = ((x1)s − µκ1y1)T1 + (µx1κ1(y1)s − µz1τ1)N1(s) + (µy1τ1 + (z1)s)B1

(18)

If we substitute the relations given in (13) into equation (18), the following expressions are obtained:

Mss = x2T1 + y2N1 + z2B1

Mst = (x1)tT1 + (Y1)N1 + (z1)tB1

Mtt = 0.
(19)

Let N̂ be the normal vector field along the curve αt of the surface M. The normal vector field N̂ is calculated
using the following equation:

N̂ =
(y1ht − z11t)T1 + (z1 ft − x1ht)N1 + (x11t − y1 ft)B1√

(y1ht − z11t)2 + (z1 ft − x1ht)2 + (x11t − y1 ft)2
(20)

We calculated following equalites from the expression (5):

E = ⟨Ms,Ms⟩ = x2
1 + y2

1 + z2
1,

F = ⟨Ms,Mt⟩ = x1 ft + Y11t + z1ht,

G = ⟨Mt,Mt⟩ = f 2
t + 1

2
t + h2

t .

(21)

and

l =
〈
N̂,Ms

〉
=

x2(y1ht − z11t) + y2(z1 ft − z1ht) + z2(x11t − y1 ft)√
(y1ht − z11t)2 + (y2(z1 ft − z1ht)2 + (z2(x11t − y1 ft)2

,

m =
〈
Mst, N̂

〉
=

(x1)t(y1ht − z11t) + (y1)t(z1 ft − z1ht) + (z1)t(z2(x11t − y1 ft)√
(y1ht − z11t)2 + (y2(z1 ft − z1ht)2 + (z2(x11t − y1 ft)2

,

n =
〈
Mtt, N̂

〉
= 0.

(22)

By substituting these relations into equation (4), the Gaussian and mean curvatures of the surface M
corresponding to the T-pedal curve αT(t) are given by KMαT

and HMαT
, respectively, as follows:

KMαT
=

∣∣∣∣∣(y1)t (z1)t
y1 z1

∣∣∣∣∣ ft +
∣∣∣∣∣(z1)t (x1)t

z1 x1

∣∣∣∣∣ 1t +

∣∣∣∣∣(x1)t (y1)t
x1 y1

∣∣∣∣∣ ht

(x2
1 + y2

1 + z2
1)( f 2

t + 1
2
t + h2

t ) − (x1 ft + y11t + z1ht)2
. (23)

HMαT
=

( f 2
t + 1

2
t + h2

t )
(
x2

∣∣∣∣∣ht 1t
z1 y1

∣∣∣∣∣ + y2

∣∣∣∣∣ ft ht
x1 z1

∣∣∣∣∣ + z2

∣∣∣∣∣1t ft
y1 x1

∣∣∣∣∣)
− (x1 ft + y11t + z1ht)

(
(x1)t

∣∣∣∣∣ht 1t
z1 y1

∣∣∣∣∣ + (y1)t

∣∣∣∣∣ ft ht
x1 z1

∣∣∣∣∣ + (z1)t

∣∣∣∣∣1t ft
y1 x1

∣∣∣∣∣)(
(x2

1 + y2
1 + z2

1)( f 2
t + 1

2
t + h2

t ) − (x1 ft + y11t + z1ht)2
)

×

√∣∣∣∣∣ht 1t
z1 y1

∣∣∣∣∣2 + ∣∣∣∣∣ ft ht
x1 z1

∣∣∣∣∣2 + ∣∣∣∣∣1t ft
y1 x1

∣∣∣∣∣2
(24)
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Example 3.7. Let us consider the unit speed curve parametrized as α(s) =
(
−

1
2 cos
√

2s,− 1
2 sin
√

2s,
√

2
2 s

)
.

Frenet vectors of the curve are as follows:

T (s) =
( √

2
2

sin
√

2s,−
√

2
2

cos
√

2s,
√

2
2

)
N (s) =

(
cos
√

2s, sin
√

2s, 0
)

B (s) =
(
−

√
2

2
sin
√

2s,
√

2
2

cos
√

2s,
√

2
2

)
.

If α(t) denote the T − Pedal curve of curve and make some algebraic operations, then following relations exist:

αT(s) = α(s) −
s
2

T =
(
−

1
2

cos
√

2s −
s
2
,−

1
2

sin
√

2s,
√

2
2

s
)
,

α′T(s) =
1
2

(T − sN) ,

α′′T (s) =
s
2

(T − B) ,

α′′′T (s) =
1
2

(T − B) + sN,

||α′T (s) || =
1
2

√

1 + s2,

α′T ∧ α
′′

T =
s2

4
(sT −N − sB),

||α′T ∧ α
′′

T || =
s2

4

√

1 + 2s2.

Frenet elements and curvatures of T − Pedal curve αt are computed as follows:

T1 =
1

√

1 + s2
(T − sN),

B1 =
1

√

1 + 2s2
(sT −N + sB),

N1 =
1

√

1 + s2
√

1 + 2s2
(sT + sN + (1 − s2)B),

κ1 =
2s2
√

1 + 2s2

(1 + s2)
√

1 + s2
,

τ1 = −
4

s(1 + 2s2)
.

The general equation of the surface M that belonged T − pedal curve is given by following equality:

M(s, t) = αT(s) + f (s, t)T1(s) + 1(s, t)N1(s) + h(s, t)B1(s) (25)

If marching-scale functions are selected as f (s, t) = s, 1(s, t) = t, h(s, t) = st and the equalities (9) are substituted into
(10) , then the equation of surface M is computed as follows:

M(s, t) =
(
A(1)

0 (s, t), A(2)
0 (s, t), A(3)

0 (s, t)
)
,
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B0(s) =

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

448 sin(
√

2s) cos(
√

2s)4
√

2 + 64 cos(
√

2s)6

− 5576 sin(
√

2s) cos(
√

2s)2
√

2 − 2928 cos(
√

2s)4

+ 10378 sin(
√

2s)
√

2 + 15089 cos(
√

2s)2
− 14725

3840 sin(
√

2s) cos(
√

2s)5
√

2 + 512 cos(
√

2s)7

− 47680 sin(
√

2s) cos(
√

2s)3
√

2 − 25536 cos(
√

2s)5

+ 81340 sin(
√

2s)
√

2 + 124536 cos(
√

2s)3
− 115137

. (26)

A(1)
0 (s, t) = −

1
2

cos(
√

2s) −
1
2

s +
s
(

sin(
√

2s)
√

2 − 1
)

√
5 − 2 sin(

√
2s)
√

2

+
t
(
5 sin(

√
2s)
√

2 + 4 cos(
√

2s)2
− 4

)
B0(s)

. (27)

A(1)
0 (s, t) = −

1
2

cos(
√

2s) −
1
2

s +
s
(

sin(
√

2s)
√

2 − 1
)

√
5 − 2 sin(

√
2s)
√

2

+
t
(
5 sin(

√
2s)
√

2 + 4 cos(
√

2s)2
− 4

)
B0(s)

. (28)

A(2)
0 (s, t) = −

1
2

sin(
√

2s) +
s cos(

√
2s)
√

2√
5 − 2 sin(

√
2s)
√

2

−
t cos(

√
2s)
√

2
B0(s)

. (29)

A(3)
0 (s, t) =

1
2

√

2 s +
s
√

2√
5 − 2 sin(

√
2s)
√

2
+

t
√

2 cos(
√

2s)
B0(s)

. (30)

where A(i)
0 (s, t) (i = 1, 2, 3) denote the coordinate functions of the surface,and B0(s) represents the common normaliza-

tion term arising from the Frenetframe of the T-pedal curve.Gauss curvature belonged to the surface M of T − Pedal
curve is calculated as follows:

KM = −

(
2 cos(

√

2s)2
√

5
√

2 s2 + 2 sin(
√

2s)2
√

5
√

2 s2

+ 7 cos(
√

2s)2
√

5
√

2 + 7 sin(
√

2s)2
√

5
√

2

+ 16 cos(
√

2s)2 + 16 sin(
√

2s)2 + 4
)2

(
2
√

5
√

2 s2 + 6
√

5
√

2 + 11s2 + 25
)2

s2

where x2,y2,z2 are follows:
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Figure 1: The surface M of T-pedal curve of the curve on α the intervals −2π ≤ s ≤ 2π and −3 ≤ t ≤ 3.

x2 = (x1)s − µκ1y1

1 +

 √1 + s2

2
−

st
√

1 + 2s2

1 + s2


s

−
s2
√

1 + 2s2

1 + s2

 s3
√

1 + 2s2

1 + s2 +
2t
√

1 + s2

1 + 2s2

 ,
y2 = µ x1κ1

(
y1

)
s − µ z1τ1

=
1
2

√

1 + s2

 √1 + s2

2
−

st
√

1 + 2s2

1 + s2

 2s2
√

1 + 2s2

(1 + s2)
√

1 + s2

 s3
√

1 + 2s2

1 + s2 +
2t
√

1 + s2

1 + 2s2


s

+
2
√

1 + s2

s(1 + 2s2)

2t
√

1 + s2

s(1 + 2s2)
+ t

 ,
z2 = µ y1τ1 + (z1)s −

2
√

1 + s2

s(1 + 2s2)

 s3
√

1 + 2s2

1 + s2 +
2t
√

1 + s2

1 + 2s2

 + 2t
√

1 + s2

s(1 + 2s2)


s

.
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Mean curvature belonged to the surface of T-pedal curve is given by following equality:

HM =

2
√

s4 + 25s2 + 160 A cos(s) s15t + 2
√

s4 + 25s2 + 160 B sin(s) s15t

+ 4
√

s4 + 25s2 + 160 A sin(s) s14t − 4
√

s4 + 25s2 + 160 B cos(s) s14t

+ 188
√

s4 + 25s2 + 160 A cos(s) s13t + 188
√

s4 + 25s2 + 160 B sin(s) s13t

+ 139200000
√

s4 + 25s2 + 160 B sin(s) s t + 7580
√

s4 + 25s2 + 160 A cos(s) s11t

+ 168920
√

s4 + 25s2 + 160 A cos(s) s9t + 15320
√

s4 + 25s2 + 160 A sin(s) s10t
...

− 4s16t2 + 582400
√

s4 + 25s2 + 160
√

s2 + 10 s9t

+ 7344800
√

s4 + 25s2 + 160
√

s2 + 10 s7t + 55312000
√

s4 + 25s2 + 160
√

s2 + 10 s5t

− 27935s16
− 820045s14

− 15616800s12
− 200814200s10

− 256000000t2
− 1755628000s8

− 19620
√

s2 + 10 s14

Example 3.8. By recalling Example 3.7., different selections of marching-scale functions of surface M obtained from
T-Pedal curve are calculated and illustrated as follows:

a) If marching scale functions are selected as f (s, t) = s, 1(s, t) = 0, h(s, t) = t

M(s, t) = A1(s) + B1(s)
C1(s)
D1(s)

,

where

A1(s) = −2 sin(
√

2s) 23/4,

B1(s) =

√

2 cos(
√

2s)
√

2 − 7
√

2

+ 9 sin(
√

2s)

448 sin(
√

2s) cos(
√

2s)4
√

2 + 64 cos(
√

2s)6

− 5576 sin(
√

2s) cos(
√

2s)2
√

2 − 2928 cos(
√

2s)4

+ 10378 sin(
√

2s)
√

2 + 15089 cos(
√

2s)2
− 14725

,

C1(s) = 20 sin(
√

2s)
√

2 − 33 + 8 cos(
√

2s)2,

D1(s) =

3840 sin(
√

2s) cos(
√

2s)5
√

2 + 512 cos(
√

2s)7

− 47680 sin(
√

2s) cos(
√

2s)3
√

2 − 25536 cos(
√

2s)5

+ 81340 sin(
√

2s)
√

2 + 124536 cos(
√

2s)3
− 115137.

By taking the derivatives the expressions (12) and (13), following equalities are obtained:

fs = 1, ft = 1, 1s = 0, 1t = 0, hs = 0, ht = 1.

x1 =

√

1 + s2

2
+ 1, y1 =

s2
√

1 + 2s2

1 + s2 , z1 = 0, µ =
1
2

√

1 + s2
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Figure 2: The surface M of T-pedal curve of the curve on α the intervals −2π ≤ s ≤ 2π and −3 ≤ t ≤ 3.

x2 =
s

2
√

1 + s2
−

s4
(
1 + 2s2

)
(1 + s2)2 , y2 =

s4
(
1 + 2s2

)
2(1 + s2)2

(
2 +
√

1 + s2
)
, z2 =

−2s
√

1 + s2
(√

1 + 2s2
) .

If these expressions are substituted into relations (10) and (11) and some necessary algebraic operations are done, then
Gauss and Mean curvatures of surface is computed as follows, respectively.

KM = 0 and HM = 0.

b) If marching-scale functions are selected as f (s, t) = s, 1(s, t) = 0, h(s, t) = st then the parametric equation of
surface is calculated like as:

M(s, t) =
A2(s, t)
B2(s)

,

where

A2(s, t) = −
1
2

cos(
√

2s) −
1
2

s +
s
(

sin(
√

2s)
√

2 − 1
)
+ s t

(
5 sin(

√
2s)
√

2 + 4 cos(
√

2s)2
− 4

)
√

5 − 2 sin(
√

2s)
√

2
,

B2(s) =

448 sin(
√

2s) cos(
√

2s)4
√

2 + 64 cos(
√

2s)6

− 5576 sin(
√

2s) cos(
√

2s)2
√

2 − 2928 cos(
√

2s)4

+ 10378 sin(
√

2s)
√

2 + 15089 cos(
√

2s)2
− 14725

3840 sin(
√

2s) cos(
√

2s)5
√

2 + 512 cos(
√

2s)7

− 47680 sin(
√

2s) cos(
√

2s)3
√

2 − 25536 cos(
√

2s)5

+ 81340 sin(
√

2s)
√

2 + 124536 cos(
√

2s)3
− 115137

·

(
20 sin(

√

2s)
√

2 − 33 + 8 cos(
√

2s)2
)
.

By taking the derivatives the expressions (12) and (13), following equalities are obtained:

fs = 1, ft = 0, 1s = 0, 1t = 0, hs = t, ht = s.
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Figure 3: The surface M of T-pedal curve of the curve on α the intervals −2π ≤ s ≤ 2π and −3 ≤ t ≤ 3

x1 =

√

1 + s2

2
+ 1,

y1 =
s3
√

1 + 2s2

1 + s2 ,

z1 = t, µ =
1
2

√

1 + s2.

(x1)s =
s

2
√

1 + s2
,

(
y1

)
s =

 s3
√

1 + 2s2

1 + s2


s

′

,

(x1)t =
(
y1

)
t = (z1)s = 0, (z1)t = 1.

x2 =
s

2
√

1 + s2
−

1
2

√

1 + s2 2s2
√

1 + 2s2

(1 + s2)
√

1 + s2

s3
√

1 + 2s2

1 + s2 ,

y2 =
s5

(
1 + 2s2

)
2(1 + s2)2

(
2 +
√

1 + s2
)
,

z2 =

(
−2s2

√

1 + s2
√

1 + 2s2

)
+ 1.

If these expressions are substituted into relations (10) and (11) and some necessary algebraic operations are done, then
Gauss and Mean curvatures of surface is computed as follows, respectively.

KM = 0 and HM =
s(x2 y1−x1 y2)

(x2
1+y2

1+t2)−st2 y1
.

c) If marching-scale functions are selected as f (s, t) = s, 1(s, t) = t, h(s, t) = t2 , then the parametric equation
of surface is calculated like as:

M(s, t) =
(
A3(s, t), B3(s, t), C3(s, t)

)
,
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where

D(s) =

448 sin(
√

2s) cos(
√

2s)4
√

2 + 64 cos(
√

2s)6

− 5576 sin(
√

2s) cos(
√

2s)2
√

2 − 2928 cos(
√

2s)4

+ 10378 sin(
√

2s)
√

2 + 15089 cos(
√

2s)2
− 14725

3840 sin(
√

2s) cos(
√

2s)5
√

2 + 512 cos(
√

2s)7

− 47680 sin(
√

2s) cos(
√

2s)3
√

2 − 25536 cos(
√

2s)5

+ 81340 sin(
√

2s)
√

2 + 124536 cos(
√

2s)3
− 115137

.

and

A3(s, t) =
D(s)

(
− 2 sin(

√
2s)
√

2
)3/2
− t2 cos(

√
2s)
√

2

(2 sin(
√

2s)
√

2 − 5)
√

D(s)
,

B3(s, t) =

1
2

√
2s + s

√
2

√
5−2 sin(

√
2s)
√

2
+ s t
√

2 cos(
√

2s)

D(s)
,

C3(s, t) =
D(s)

(
− 2 sin(

√
2s)
√

2
)3/2
+ t2

(
2 cos(

√
2s)2
√

2 − 7
√

2 + 9 sin(
√

2s)
)

D(s)
(
20 sin(

√
2s)
√

2 − 33 + 8 cos(
√

2s)2
) .

By taking the derivatives the expressions (12) and (13), following equalities are obtained:

fs = 1, ft = 0, 1s = 0, 1t = 1, hs = 0, ht = 2t.

x1 =

√

1 + s2

2
+ 1 −

ts2
√

1 + 2s2

(1 + s2)
,

y1 =
s3
√

1 + 2s2

(1 + s2)
+

2t2
√

1 + s2

s(1 + 2s2)
,

z1 = −
2t
√

1 + s2

s(1 + 2s2)
, µ =

1
2

√

1 + s2.

(x1)s =

 √1 + s2

2
+ 1 −

ts2
√

1 + 2s2

(1 + s2)


s

,

(
y1

)
s =

 s3
√

1 + 2s2

(1 + s2)
+

2t2
√

1 + s2

s(1 + 2s2)


s

′

,

(z1)s =

−2t
√

1 + s2

s(1 + 2s2)


s

,

(x1)t = −
s2
√

1 + 2s2

(1 + s2)
.

(
y1

)
t =

4t
√

1 + s2

s(1 + 2s2)
,

(z1)t = −
2
√

1 + s2

s(1 + 2s2)
,
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Figure 4: The surface M of T-pedal curve of the curve on α the intervals −2π ≤ s ≤ 2π and −3 ≤ t ≤ 3.

x2 =

 √1 + s2

2
+ 1 −

ts2
√

1 + 2s2

(1 + s2)


s

−

 s5
(
1 + 2s2

)
(1 + s2)2 +

2st2

√

1 + s2(
√

1 + 2s2)

 ,
y2 =

 √1 + s2

2
+ 1

 s2
√

1 + 2s2

(1 + s2)

 s3
√

1 + 2s2

(1 + s2)
+

2t2
√

1 + s2

s(1 + 2s2)


s

−

4t
(
1 + s2

)
s2(1 + 2s2)2

z2 = −
2
√

1 + s2

s(1 + 2s2)

 s3
√

1 + 2s2

(1 + s2)
+

2t2
√

1 + s2

s(1 + 2s2)

 + −2t
√

1 + s2

s(1 + 2s2)


s

If these expressions are substituted into relations (10) and (11) and some necessary algebraic operations are done, then
Gauss and Mean curvatures of surface is computed as follows, respectively

KM =
x1 (z1)t − z1 (x1)t + 2t

(
y1 (x1)t − x1

(
y1

)
t

)(
x2

1 + y2
1 + t2

)
(1 + 4t2) −

(
y1 + 2tz1

)2
,

HM =

(
1 + 4t2

)
x2

(
2ty1 − z1

)
− 2tx1y2 + x1z2 −

(
y1 + 2tz1

) [
(x1)t

(
2ty1 − z1

)
− 2t

(
y1

)
t x1 + (z1)t x1

]
(
x2

1 + y2
1 + t2

)
(1 + 4t2) −

(
y1 + 2tz1

) √(
2ty1 − z1

)2 + x2
1 (1 + 4t2)

.

d) If marching-scale functions are selected as f (s, t) = s, 1(s, t) = st, h(s, t) = t , then the parametric equation
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of surface is calculated like as:

D(s) =

448 sin(
√

2s) cos(
√

2s)4
√

2 + 64 cos(
√

2s)6

− 5576 sin(
√

2s) cos(
√

2s)2
√

2 − 2928 cos(
√

2s)4

+ 10378 sin(
√

2s)
√

2 + 15089 cos(
√

2s)2
− 14725

3840 sin(
√

2s) cos(
√

2s)5
√

2 + 512 cos(
√

2s)7

− 47680 sin(
√

2s) cos(
√

2s)3
√

2 − 25536 cos(
√

2s)5

+ 81340 sin(
√

2s)
√

2 + 124536 cos(
√

2s)3
− 115137

.

M(s, t) =
A4(s, t)√

B4(s, t)
,

where

A4(s, t) = −2 sin(
√

2s)
√

2 3/2 + t2
(
2 cos(

√

2s)2
√

2 − 7
√

2 + 9 sin(
√

2s)
)
,

B4(s, t) = D(s)
(
20 sin(

√

2s)
√

2 − 33 + 8 cos(
√

2s)2
)
.

By taking the derivatives the expressions (12) and (13), following equalities are obtained:

fs = 1, ft = 0, 1s = t, 1t = s, hs = 0, ht = 1.

x1 =

√

1 + s2

2
+ 1 −

s3t
√

1 + 2s2

(1 + s2)
,

y1 =
s3
√

1 + 2s2

(1 + s2)
− t +

2t
√

1 + s2

s (1 + 2s2)
,

z1 = −
2t
√

1 + s2

(1 + 2s2)
,

µ =
1
2

√

1 + s2.

(x1)s =

 √1 + s2

2
+ 1 −

s3t
√

1 + 2s2

(1 + s2)


s(

y1
)

s =
s3
√

1 + 2s2

(1 + s2)
− t +

2t
√

1 + s2

s (1 + 2s2) s

′

,

(z1)s =

−2t
√

1 + s2

(1 + 2s2)


s

.

(x1)t = −
s3
√

1 + 2s2

(1 + s2)
,

(
y1

)
t =

2
√

1 + s2

s (1 + 2s2)
− 1,

(z1)t = −
2
√

1 + s2

(1 + 2s2)
,
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Figure 5: he surface M of T-pedal curve of the curve on α the intervals −2π ≤ s ≤ 2π and −3 ≤ t ≤ 3

x2 =

 √1 + s2

2
+ 1 −

s3t
√

1 + 2s2

(1 + s2)


s

−
s2
√
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 s3
√
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2t
√

1 + s2

s(1 + 2s2)
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 √1 + s2

2
+ 1 −

s3t
√

1 + 2s2

(1 + s2)

 s2
√

1 + 2s2

(1 + s2)

 s3
√

1 + 2s2

(1 + s2)
− t +

2t
√

1 + s2

s(1 + 2s2)


s

+
4t

(
1 + s2

)
s(1 + 2s2)2 ,

z2 = −

 s3
√

1 + 2s2

(1 + s2)
− t +

2t
√

1 + s2

s(1 + 2s2)

 2
√

1 + s2

s(1 + 2s2)
+

2t
√

1 + s2

(1 + 2s2)


s

.

If these expressions are substituted into relations (10) and (11) and some necessary algebraic operations are done, then
Gauss and Mean curvatures of surface is computed as follows, respectively.

KM =
s (x1 (z1)t − z1 (x1)t) +

(
y1 (x1)t − x1

(
y1

)
t

)(
x2

1 + y2
1 + t2

)
(1 + s2) −

(
sy1 + z1

)2
,

HM =

(
1 + s2

)
x2

(
y1 − sz1

)
− tx1y2 + sx1z2 −

(
sy1 + z1

) [
(x1)t

(
y1 − sz1

)
−

(
y1

)
t x1 + s (z1)t x1

]
(
x2

1 + y2
1 + t2

)
(1 + s2) −

(
sy1 + z1

) √(
y1 − sz1

)2 + x2
1 (1 + s2)

.

Structural comparison. Although the marching-scale functions are deliberately varied in cases (a)–(d), this
variation should not be interpreted as producing essentially different surface constructions. On the contrary,
the four cases represent controlled modifications of the same underlying geometric mechanism. In each
case, the surface M(s, t) is generated by perturbing the T-pedal curve along its Frenet frame, while preserving
the dominant dependence on the curve parameter s.



F. Ertem Kaya / TJOS 10 (2), 105–120 119

The purpose of considering different marching-scale functions is therefore not to alter the intrinsic nature
of the surface, but to examine how distinct choices of tangential and normal contributions influence the
resulting parametric structure and curvature behavior.

This observation allows all four surfaces to be interpreted within a unified framework, where the
differences arise from the distribution of the marching-scale functions rather than from fundamentally
different geometric constructions. Consequently, the comparable behavior observed in the Gauss and mean
curvatures across cases (a)–(d) is not coincidental, but rather a direct consequence of this shared structural
backbone.

From this perspective, the decomposition adopted in the examples serves a dual purpose: it clarifies
the role of marching-scale functions in the surface generation process and highlights the robustness of the
proposed construction under different functional selections, thereby providing a coherent basis for further
analytical and geometric investigations.

4. Conclusion

In this study, first, the T-pedal curve, which is the geometric locus of the perpendicular projection points
drawn from any point not on the curve onto the tangent vector of any curve, is defined. Subsequently,
surfaces containing this T-pedal curve are created using Frenet vectors along the curve, with the help
of marching-scale functions. Finally, the geometric properties, Gaussian and mean curvatures of these
obtained surfaces are calculated.
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[1] As, E. ve Sarioğlugil, A. (2015). On the Pedal Surfaces of 2-d Surfaces with the Constant Support Function in E4. Pure Mathematical
Sciences, 4(3), 105 – 120. http://dx.doi.org/10.12988/pms.2015.545
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