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An Improved Ratio Estimator for Estimating the Variance of Covid-19
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Abstract. Some rate-type proposed estimators of population variance, which use known skewness co-
efficients for auxiliary information in simple random sampling, are introduced. Ratio-type estimators
combined by taking a weighted average of these proposed estimators are also presented. The mean square
error (MSE) expressions of the proposed estimators are expressed up to the first order of approximation.
After comparing MSEs of some competing estimators, it is shown theoretically that the proposed combining
ratio estimators perform better than the unbiased estimator, and the estimators which were introduced in
[3] and [4], and the proposed estimators for simple random sampling. In addition, the results are verified
with the aid of Covid-19 datasets.

1. Introduction

Auxiliary information plays an important role in decreasing the variance of an estimator in sampling
design. For the ratio estimator of the population variance, it is necessary to know the population variance
of the auxiliary variable. Starting from here, most researchers have suggested many ratio estimators for
effective estimation of population variance by taking advantage of the correlation between the auxiliary
and study variables. Some of the studies in this vein of literature include, inter alia, [1, 2, 6–12, 14–17].

It is discussed the following usual unbiased estimator of variance (t0=s2
y) and some existing estimators

of variance S2
y. The usual unbiased estimator of variance is given by:

V (t0) =MSE (t0) =
S4

y

n
(
β2
(
y
)
− 1
)

(1)

When the population variance S2
x of the auxiliary variable x is known, the ratio estimator of the popula-

tion variance S2
y, according to [3], is given by:

tR = s2
y

S2
x

s2
x
.

To the first degree of approximation, the MSE of the estimator tR, given by:

MSE (tR) =
S4

y

n
[
β2
(
y
)
+ β2 (x) − 2θ

]
(2)
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where β2
(
y
)
=
µ40

µ2
20

is the population coefficient of kurtosis of the studied variable. β2 (x)=µ04

µ2
02

is population

coefficient of kurtosis of the auxiliary variable. θ= µ22

µ20µ02
and µrs=

1
N−1

∑N
i=1

(
yi−Y

)r(
xi−X

)s
with r, s being

nonnegative integers [4].

Ratio estimator of the population variance S2
y due to [4] is given by:

tKC1 =
s2

y

s2
x − Cx

(
S2

x − Cx

)
(3)

tKC2 =
s2

y

s2
x − β2(x)

(
S2

x − β2(x)
)

(4)

tKC3 =
s2

y

s2
xβ2 (x) − Cx

(
S2

xβ2 (x) − Cx

)
(5)

tKC4 =
s2

y

s2
xCx − β2(x)

(
S2

xCx − β2(x)
)

(6)

where s2
y and s2

x are unbiased estimators of population variances S2
y and S2

x, respectively. Cx =
Sx

X
is the

coefficient of variation for the population and β2(x) is the population kurtosis of the auxiliary variable. The
MSE equations of the estimator between Eq. (3)-(6) can be found using the Taylor series expansion [4]:

MSE (tKCi) �
S4

y

n

{
β2
(
y
)
− 1 − 2Ai (θ − 1) + A2

i
[
β2 (x) − 1

]}
; i = 1, 2, 3, 4 (7)

where, A1 =
S2

x
S2

x−Cx
, A2 =

S2
x

S2
x−β2(x) , A3 =

S2
xβ2(x)

S2
xβ2(x)−Cx

and A4 =
S2

xCx

S2
xCx−β2(x) .

2. Proposed Estimators

Following [4], it is suggested ratio-type estimators of the population variance S2
y using the coefficient of

population skewness. These estimators are modified as below:

tSCi =
s2

y

m1s2
x −m2

(
m1S2

x −m2

)
; i = 1, 2, 3, 4, 5

where, m1 and m2 are either real number of the function of the known parameter of auxiliary attributes
such as Cx, β1(x), and β2(x).

Some of the rate type estimators of the population mean, which can be found by proper choice of
constants m1 and m2 are shown in Table 1.

Here, β1(x) is the population skewness of the auxiliary variable, β2(x) is the population kurtosis of the
auxiliary variable, and Cx is the coefficient of variation of the auxiliary variable.

It is defined that the MSE equation of these estimators is in the same form as the MSE Equation in (7).
The MSE equations of these estimators are given as:

MSE (tSCi) �
S4

y

n

{
β2
(
y
)
− 1 − 2δi (θ − 1) + δ2

i
[
β2 (x) − 1

]}
; i = 1, 2, 3, 4, 5 (8)
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Estimators Values of

m1 m2

tSC1 =
s2

y

s2
x−β1(x) (S

2
x − β1(x)) 1 β1(x)

tSC2 =
s2

y

s2
xβ2(x)−β1(x) (S

2
xβ2(x) − β1(x)) β2(x) β1(x)

tSC3 =
s2

y

s2
xCx−β1(x) (S

2
xCx − β1(x)) Cx β1(x)

tSC4 =
s2

y

s2
xβ1(x)−Cx

(S2
xβ1(x) − Cx) β1(x) Cx

tSC5 =
s2

y

s2
xβ1(x)−β2(x) (S

2
xβ1(x) − β2(x)) β1(x) β2(x)

Table 1: Suggested estimators for population variance based on coefficient of skewness

where, δ1 =
S2

x
S2

x−β1(x) , δ2 =
S2

xβ2(x)
S2

xβ2(x)−β1(x) , δ3 =
S2

xCx

S2
xCx−β1(x) , δ4 =

S2
xβ1(x)

S2
xβ1(x)−Cx

and δ5 =
S2

xβ1(x)
S2

xβ1(x)−β2(x) . The function given in
Eq. (8) is utilized to obtain the MSE values of the proposed estimators. In addition, by combining the ratio
estimators for population variance given in Table 1, estimators using the style of estimators given in [5] are
suggested. The general situation of the proposed estimators is;

tprj = ω
s2

y

s2
x − β1(x)

(
S2

x − β1(x)
)
+ (1 − ω)

s2
y

s2
xm1 −m2

(
S2

xm1 −m2

)
, j = 1, 2, 3, 4

where ω is an optimal value that makes the MSE of tprj ( j = 1, 2, 3, 4) minimum. By using the first degree
of approximation in Taylor series technique, the MSE of the tprj can be found by:

MSE
(
tprj

)
� d
∑

d′ (9)

where

d =
[
∂h (k, l)
∂k

∣∣∣∣∣
S2

y,S2
x

∂h (k, l)
∂l

∣∣∣∣∣
S2

y,S2
x

]
and

∑
=

 S4
y

n
[
β2
(
y
)
− 1
] S2

y

n S2
x (θ − 1)

S2
y

n S2
x (θ − 1) S4

x
n
[
β2 (x) − 1

]


Here h (k, l) = tprj. Accordingly, d is obtained by:

d =

1 −
(
S2

ym1

)(
S2

xm1 −m2

) − ω S2
yβ1 (x) m1 − S2

ym2(
S2

x − β1 (x)
) (

S2
xm1 −m2

)  (10)

Utilizing equation (9), the MSE estimator of tprj is obtained.
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MSE
(
tprj

)
�

S4
y

n
[
β2
(
y
)
− 1
]
+


(
S2

ym1

)(
S2

xm1 −m2

) + ω S2
yβ1 (x) m1 − S2

ym2(
S2

x − β1 (x)
) (

S2
xm1 −m2

) 
2

S4
x

n
[
β2 (x) − 1

]
−2


(
S2

ym1

)(
S2

xm1 −m2

) + ω S2
yβ1 (x) m1 − S2

ym2(
S2

x − β1 (x)
) (

S2
xm1 −m2

)  S2
y

n
S2

x (θ − 1) , j = 1, 2, 3, 4

For m1 = β2 (x) , m2 = β1 (x)) in Table 1 (tSC1 and tSC2);

tpr1 = ω
s2

y

s2
x − β1(x)

(
S2

x − β1(x)
)
+ (1 − ω)

s2
y

s2
xβ2 (x) − β1 (x)

(
S2

xβ2 (x) − β1 (x)
)
,

The expressions for the MSE of this estimator are given in following Eq (11):

MSE
(
tpr1

)
�

S4
y

n
[
β2
(
y
)
− 1
]
+


(
S2

yβ2 (x)
)(

S2
xβ2 (x) − β1 (x)

) + ω S2
yβ1 (x) β2 (x) − S2

yβ1 (x)(
S2

x − β1 (x)
) (

S2
xβ2 (x) − β1 (x)

) 
2

S4
x

n
[
β2 (x) − 1

]
−2


(
S2

yβ2 (x)
)(

S2
xβ2 (x) − β1 (x)

) + ω S2
yβ1 (x) β2 (x) − S2

yβ1 (x)(
S2

x − β1 (x)
) (

S2
xβ2 (x) − β1 (x)

)  S2
y

n
S2

x (θ − 1)

(11)

For m1 = Cx, m2 = β1 (x) in Table 1 (tSC1 and tSC3);

tpr2 = ω
s2

y

s2
x − β1 (x)

(
S2

x − β1 (x)
)
+ (1 − ω)

s2
y

s2
xCx − β1 (x)

(
S2

xCx − β1 (x)
)
. (12)

The expressions for the MSE of this estimator of Eq. (12) are computed as:

MSE
(
tpr2

)
�

S4
y

n
[
β2
(
y
)
− 1
]
+


(
S2

yCx

)(
S2

xCx − β1 (x)
) + ω S2

yβ1 (x) Cx − S2
yβ1 (x)(

S2
x − β1 (x)

) (
S2

xCx − β1 (x)
) 

2
S4

x

n
[
β2 (x) − 1

]
−2


(
S2

yCx

)(
S2

xCx − β1 (x)
) + ω S2

yβ1 (x) Cx − S2
yβ1 (x)(

S2
x − β1 (x)

) (
S2

xCx − β1 (x)
)  S2

y

n
S2

x (θ − 1) .

For m1 = β1 (x), m2 = Cx in Table 1 (tSC1 and tSC4);

tpr3 = ω
s2

y

s2
x − β1 (x)

(
S2

x − β1 (x)
)
+ (1 − ω)

s2
y

s2
xβ1 (x) − Cx

(
S2

xβ1 (x) − Cx

)
. (13)

The expressions for the MSE of this estimator of Eq (13) are computed in Eq (14):

MSE
(
tpr3

)
�

S4
y

n
[
β2
(
y
)
− 1
]
+


(
S2

yβ1 (x)
)(

S2
xβ1 (x) − Cx

) + ω S2
yβ1 (x) β1 (x) − S2

yCx(
S2

x − β1 (x)
) (

S2
xβ1 (x) − Cx

) 
2

S4
x

n
[
β2 (x) − 1

]
−2


(
S2

yβ1 (x)
)(

S2
xβ1 (x) − Cx

) + ω S2
yβ1 (x) β1 (x) − S2

yCx(
S2

x − β1 (x)
) (

S2
xβ1 (x) − Cx

)  S2
y

n
S2

x (θ − 1) ,

(14)
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For m1 = β1 (x) , m2 = β2 (x)) in Table 1 (tSC1 and tSC4);

tpr4 = ω
s2

y

s2
x − β1 (x)

(
S2

x − β1 (x)
)
+ (1 − ω)

s2
y

s2
xβ1 (x) − β2 (x)

(
S2

xβ1 (x) − β2 (x)
)
, (15)

The expressions for the MSE of this estimator of Eq (15) are computed in Eq (16):

MSE
(
tpr4

)
�

S4
y

n
[
β2
(
y
)
− 1
]
+


(
S2

yβ1 (x)
)(

S2
xβ1 (x) − β2 (x)

) + ω S2
yβ1 (x) β1 (x) − S2

yβ2 (x)(
S2

x − β1 (x)
) (

S2
xβ1 (x) − Cx

) 
2

S4
x

n
[
β2 (x) − 1

]
−2


(
S2

yβ1 (x)
)(

S2
xβ1 (x) − β2 (x)

) + ω S2
yβ1 (x) β1 (x) − S2

yβ2 (x)(
S2

x − β1 (x)
) (

S2
xβ1 (x) − β2 (x)

)  S2
y

n
S2

x (θ − 1)

(16)

The optimal value of ω to minimize Eq. (10) can be calculated by:

∂
∂ω

MSE
(
tprj

)
= 0

2ω
S4

x

n
[
β2 (x) − 1

]  S2
yβ1 (x) m1 − S2

ym2(
S2

x − β1 (x)
) (

S2
xm1 −m2

) 
2

− 2

 S2
yβ1 (x) m1 − S2

ym2(
S2

x − β1 (x)
) (

S2
xm1 −m2

) S2
y

n
S2

x (θ − 1) −


(
S2

ym1

)(
S2

xm1 −m2

)  S4
x

n
[
β2 (x) − 1

] = 0.

ω∗ =

{
S2

y

n S2
x (θ − 1) −

(
(S2

ym1)
(S2

xm1−m2)

)
S4

x
n
[
β2 (x) − 1

]}
S4

x
n
[
β2 (x) − 1

] ( S2
yβ1(x)m1−S2

ym2

(S2
x−β1(x))(S2

xm1−m2)

) . (17)

Considering the optimal values of ω∗ in Eq (17), the minimum MSE of the proposed estimators is
obtained. All proposed estimators have the same minimum mean square error as:

MSEmin

(
tprj

)
�

S4
y

n

[
β2
(
y
)
− 1 −

(θ − 1)2(
β2 (x) − 1

) ] ; j = 1, 2, 3, 4.

3. Efficiency Comparisons

In this section, the MSE of proposed combining estimator tpr is compared with the MSEs of existing
estimators discussed in the literature.

Condition (i): By using Eq. (1) and (17), if

MSE (t0) >MSEmin

(
tprj

)

S4
y

n
(θ − 1)2(
β2 (x) − 1

) > 0
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Condition (ii): By using Eq (2) and (17), if

MSE (tR) >MSEmin

(
tprj

)

S4
y

n

[
β2 (x) − 2θ + 1 +

(θ − 1)2(
β2 (x) − 1

) ] > 0.

Condition (iii): By using Eq (7) and (17), if

MSE (tKCi) >MSEmin

(
tprj

)

S4
y

n

[
−2Ai (θ − 1) + A2

i
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] > 0.

Condition (iv): By using Eq (8) and (17), if

MSE (tSCi) >MSEmin

(
tprj

)

S4
y

n

[
−2δi (θ − 1) + δ2

i
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] > 0.

Using the above-mentioned conditions (i)-(iv), it is inferred that the proposed combining ratio-type
estimators tpr perform better than all other competing estimators mentioned above.

4. Numerical Illustrations

To test whether the theoretical results hold, the efficiency of several estimators was compared using
Covid-19 datasets. This dataset includes the data of the Covid-19 Hazard & Exposure index, Development
& Deprivation index, Covid-19 Lack of Coping Capacity index, and Health Conditions index [13].

4.1. Population I ([13])

The population consists of the Covid-19 Hazard & Exposure index and Development & Deprivation
index of 190 countries. In this population, the primary variable is the Covid-19 Hazard & Exposure index
data scaled from 0 to 10 (0 is low hazard& exposure, 10 is high hazard & exposure) which is based on
sanitation, drinking water, hygiene, and population. In addition, the auxiliary attribute is the Development
& Deprivation index scaled from 0 to 10 (0 is high development (low deprivation), 10 is low development
(high deprivation)), which is based on the Human Development Index and the Multidimensional Poverty
Index. In the light of this information, the variables are defined as following:

y : Covid-19 Hazard & Exposure
x : Development & Deprivation

N = 191, Y = 4.235, X = 4.164, Sy = 1.593, Sx = 3.175,
β2
(
y
)
= 2.101, β2 (x) = 1.712,

β1
(
y
)
= 0.544, β1 (x) = 0.166, θ = 1.166, ρ = 0.83
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Population I Population II

Estimators 50 75 100 50 75 100

t0 0.141685 0.094456 0.070842 0.401866 0.267910 0.200933

tR 0.074821 0.049881 0.037411 0.945401 0.630267 0.472700

tKC1 0.077460 0.051640 0.038730 1.353447 0.902298 0.676724

tKC2 0.083720 0.055813 0.041860 5.628351 3.752234 2.814176

tKC3 0.076161 0.050774 0.038081 1.037116 0.691411 0.518558

tKC4 0.089444 0.059629 0.044722 3.882710 2.588473 1.941355

tSC1 0.075634 0.050423 0.037817 1.380654 0.920436 0.690327

tSC2 0.075271 0.050180 0.037635 1.041711 0.694474 0.520855

tSC3 0.075932 0.050621 0.037966 1.309356 0.872904 0.654678

tSC4 0.095002 0.063334 0.047501 1.267566 0.845044 0.633783

tSC5 0.293717 0.195811 0.146858 3.495179 2.330119 1.747589

tpr 0.073149 0.048766 0.036575 0.392597 0.261731 0.196298

Table 2: MSE values of different estimators for simple random sampling

4.2. Population II ([13])

The population consists of the Covid-19 Lack of Coping Capacity index and Health Conditions index
of 190 countries. In population 2, the primary variable is the Covid-19 Lack of Coping Capacity index data
scaled from 0 to 10 (0 is low lack, 10 is high lack), which is based on Institutionally index, Infrastructure
index, International Health Regulations core capacity scores, and Operational readiness index. In addition,
the auxiliary attribute is the Health Conditions index data scaled from 0 to 10 (0 is favorable conditions, 10
is unfavorable conditions), which is based on the Incidence of Tuberculosis, the Malaria incidence per 1,000
population at risk, and People requiring interventions against neglected tropical diseases. In the light of
this information, the variables are defined as;

y : Covid-19 Lack of Coping Capacity
x : Health Conditions

N = 191, Y = 4.676, X = 2.005, Sy = 1.972, Sx = 2.268,
β2
(
y
)
= 2.330, β2 (x) = 3.334,

β1
(
y
)
= −0.336, β1 (x) = 1.182, θ = 1.268, ρ = 0.64

Here, the theoretical results are supported by two real data applications to show the superiority of the
proposed estimators. In the first application, the variable of the study is taken as the Covid-19 Hazard &
Exposure index and the auxiliary variable is Development & Deprivation index. The correlation coefficient
between the Covid-19 Hazard & Exposure index and Development & Deprivation index is 0.83. From
this result, it is understood that there is a strong positive relationship between these two variables. Ratio
estimation can be made using these two variables. Combining ratio-type estimators with a mean square
error of minimum is suggested for the ratio estimation of the variance of the Covid-19 Hazard & Exposure
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index using the Development & Deprivation index auxiliary variable.
In the second application, in the same fashion, the variable of interest is taken as the Covid-19 Lack of

Coping Capacity index and the auxiliary variable as Health Conditions index. The correlation coefficient
between the Covid-19 Lack of Coping Capacity index and Health Conditions index is 0.64. From this result,
it is understood that there is a strong positive relationship between these two variables. The estimator with
the minimum means square error for the ratio estimation of the variance of the Covid-19 Lack of Coping
Capacity index using the Health Conditions index auxiliary variable was verified. The sample size is taken
as n= 50, 75, and 100. Table 2 exhibits that the performance of the proposed combining estimators tpr is
more efficient than the usual unbiased estimator t0, and the estimator tR of [3], and the estimators of [4], tKCi,
(i= 1, 2, 3, 4), and the proposed estimators tSCi, (i= 1, 2, 3, 4, 5). This is an expected result when considering
the efficiency comparisons in Section 3. The conditions (i)-(iv) are satisfied the following for the proposed
combining ratio-type estimators for simple random sampling:

For Population I,

S4
y

n
(θ − 1)2(
β2 (x) − 1

) = 0.068 > 0. (18)

Condition (i) is satisfied as to Eq (18).

S4
y

n

[
β2 (x) − 2θ + 1 +

(θ − 1)2(
β2 (x) − 1

) ] = 0.0016 > 0. (19)

Condition (ii) is satisfied as to Eq (19).

S4
y

n

[
−2A1 (θ − 1) + A2

1
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.0043 > 0, (20)

S4
y

n

[
−2A2 (θ − 1) + A2

2
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.011 > 0, (21)

S4
y

n

[
−2A3 (θ − 1) + A2

3
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.0030 > 0, (22)

S4
y

n

[
−2A4 (θ − 1) + A2

4
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.0043 > 0. (23)

Condition (iii) is satisfied as to Eq (20), (21), (22) and (23).

S4
y

n

[
−2δ1 (θ − 1) + δ2

1
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.0025 > 0, (24)

S4
y

n

[
−2δ2 (θ − 1) + δ2

2
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.0021 > 0, (25)

S4
y

n

[
−2δ3 (θ − 1) + δ2

3
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.0028 > 0, (26)
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S4
y

n

[
−2δ4 (θ − 1) + δ2

4
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.0022 > 0. (27)

Condition (iv) is satisfied as to Eq (24), (25), (26) and (27).

For Population II

S4
y

n
(θ − 1)2(
β2 (x) − 1

) = 0.0092 > 0. (28)

Condition (i) is satisfied as to Eq (28).

S4
y

n

[
β2 (x) − 2θ + 1 +

(θ − 1)2(
β2 (x) − 1

) ] = 0.553 > 0 (29)

Condition (ii) is satisfied as to Eq (29).

S4
y

n

[
−2A1 (θ − 1) + A2

1
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.961 > 0, (30)

S4
y

n

[
−2A2 (θ − 1) + A2

2
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 5.236 > 0, (31)

S4
y

n

[
−2A3 (θ − 1) + A2

3
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.645 > 0, (32)

S4
y

n

[
−2A4 (θ − 1) + A2

4
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 3.490 > 0. (33)

Condition (iii) is satisfied as to Eq (30), (31), (32) and (33).

S4
y

n

[
−2δ1 (θ − 1) + δ2

1
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.988 > 0, (34)

S4
y

n

[
−2δ2 (θ − 1) + δ2

2
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.649 > 0, (35)

S4
y

n

[
−2δ3 (θ − 1) + δ2

3
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.917 > 0, (36)

S4
y

n

[
−2δ4 (θ − 1) + δ2

4
(
β2 (x) − 1

)
+

(θ − 1)2(
β2 (x) − 1

) ] = 0.875 > 0. (37)

Condition (iv) is satisfied as to Eq (34), (35), (36) and (37).
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5. Conclusion

I have improved the combination of rate type estimators to estimate population variance. First, the
performances of these estimators are discussed theoretically. The conditions (i)-(iv) have occurred as
outcomes of the theoretical comparison of the proposed combining ratio-type estimators with the competing
estimators. Based on these results, it is determined that the proposed competing ratio-type estimator
performs better than the competing estimators. That is, the proposed combining ratio-type estimator is
stronger than all competing estimators for the two studied populations. For n= 50, 75, and 100, depending
on the Development & Deprivation index, an effective estimator has been suggested that makes the mean
square error value of the average of the Covid-19 Hazard & Exposure minimum with 0.073149, 0.048766,
and 0.036575, respectively. These findings represent that the proposed combining estimator is successful
in estimating the Covid-19 Hazard & Exposure. Similarly, for n= 50, 75, and 100, depending on the health
conditions index, it is seen for the proposed estimator that the average value of error squares of the mean
ratio estimation of the Covid-19 Lack of Coping Capacity is minimum with 0.392597, 0.261731, and 0.19298,
respectively. These results indicate that the proposed combining estimator is successful in estimating the
Covid-19 Lack of Coping Capacity. In addition, it is worth mentioning that there is a marked reduction in
MSE values when the size of the sample increases.
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