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Some Notes on Semi-Tensor Bundle
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Abstract. Using the fiber bundle M over a manifold B, we define a semi-tensor (pull-back) bundle tB of
type (p,q). The present paper is devoted to some results concerning with the horizontal lifts of some tensor
fields from manifold B to its semi-tensor bundle tB of type (p,q).

1. Introduction

Let Mn be an n-dimensional differentiable manifold of class C∞ and π1 : Mn → Bm the differentiable
bundle determined by a submersion π1. Suppose that (xi) = (xa, xα), a, b, ... = 1, ...,n − m;α, β, ... = n − m +
1, ...,n;i, j, ... = 1, 2, ...,n is a system of local coordinates adapted to the bundle π1 : Mn → Bm, where xα are
coordinates in Bm, and xa are fiber coordinates of the bundle π1 : Mn → Bm. If (xi′ ) = (xa′ , xα′ ) is another
system of local adapted coordinates in the bundle, then we have [8] xa′ = xa′

(
xb, xβ

)
,

xα′ = xα′
(
xβ

)
.

(1)

The Jacobian of (1) has components

(
Ai′

j

)
=

(
∂xi′

∂x j

)
=

 Aa′
b Aa′

β

0 Aα′β

 ,
where

Aα
′

β =
∂xα′

∂xβ
.

Let
(
Tp

q

)
x

(Bm)(x = π1(x̃), x̃ = (xa, xα) ∈ Mn) be the tensor space at a point x ∈ Bm with local coordinates
(x1, ..., xm), we have the holonomous frame field

∂xi1 ⊗ ∂xi2 ⊗ ... ⊗ ∂xip ⊗ dx j1 ⊗ dx j2 ⊗ ... ⊗ dx jq ,

Corresponding author: FY mail address: furkan.yildirim@atauni.edu.tr ORCID: 0000-0003-0081-7857, MA ORCID:0000-0003-0825-
7196

Received: 15 July 2024; Accepted: 19 September 2024; Published: 30 September 2024.
Keywords. Vector field, horizontal lift, pull-back bundle, semi-tensor bundle
2010 Mathematics Subject Classification. 53A45, 55R10, 57R25
Cited this article as: Yıldırım, F. & Aydın, M. (2014). Some Notes on Semi-Tensor Bundle. Turkish Journal of Science, 9(2), 157–161.



F. Yıldırım, M. Aydın / TJOS 9 (2), 157–161 158

for i ∈ {1, ...,m}p, j ∈ {1, ...,m}q, over U ⊂ Bm of this tensor bundle, and for any (p, q)-tensor field t we have
[[4], p.163]:

t|U = ti1...ip
j1... jq
∂xi1 ⊗ ∂xi2 ⊗ ... ⊗ ∂xip ⊗ dx j1 ⊗ dx j2 ⊗ ... ⊗ dx jq ,

then by definition the set of all points (xI) = (xa, xα, xα), xα= ti1...ip
j1... jq

,α=α +mp+q,I, J, ...=1, ...,n +mp+q is a semi-

tensor bundle tp
q(Bm) over the manifold Mn [8], [15], [18] . The semi-tensor bundle tp

q(Bm) has the natural
bundle structure over Bm, its bundle projection π : tp

q(Bm) → Bm being defined by π : (xa, xα, xα) → (xα). If
we introduce a mapping π2 : tp

q(Bm) → Mn by π2 : (xa, xα, xα) → (xa, xα), then tp
q(Bm) has a bundle structure

over Mn. It is easily verified that π = π1 ◦ π2 [6],[8],[15], [18].
On the other hand, let ε = π : E→ B denote a fiber bundle with fiber F. Given a manifold B′ and a map

f : B′ → B, one can construct in a natural way a bundle over B′ with the same fiber: Consider the subset

f ∗E =
{
(b′, e) ∈ B′ × E| f (b′) = π (e)

}
together with the subspace topology from B′ ×E, and denote by π1 : f ∗E→ B′, π2 : f ∗E→ E the projections.
f ∗ε = π1 : f ∗E→ B′ is a fiber bundle with fiber F, called the pull-back bundle of ε via f [[3], [5], [8], [9], [11],
[14], [15], [18]].

From the above definition it follows that the semi-tensor bundle (tp
q(Bm), π2) is a pull-back bundle of the

tensor bundle over Bm by π1 (see, for example [8], [13], [15], [18]).

In other words, the semi-tensor bundle (induced or pull-back bundle) of the tensor bundle
(
Tp

q(Bm), π̃,Bm

)
is the bundle

(
tp
q(Bm), π2,Mn

)
over Mn with a total space tp

q(Bm) =
{
((xa, xα) , xα) ∈Mn ×

(
Tp

q

)
x

(Bm) : π1 (xa, xα) = π̃
(
xα, xα

)
= (xα)

}
⊂

Mn×
(
Tp

q

)
x

(Bm).To a transformation (1) of local coordinates of Mn, there corresponds on tp
q(Bm) the coordinate

transformation 
xa′ = xa′

(
xb, xβ

)
,

xα′ = xα′
(
xβ

)
,

xα
′

= t
β′1...β

′
p

α′1...α
′
q
= A

β′1...β
′
p

α1...αp
Aβ1...βq

α′1...α
′
q
tα1...αp

β1...βq
= A(β′)

(α) A(β)
(α′)x

β.

(2)

The Jacobian of (2) is given by [8], [15], [18]:

Ā =
(
AI′

J

)
=


Aa′

b Aa′
β 0

0 Aα′β 0

0 t(α)
(σ)∂βA

(β′)
(α) A(σ)

(α′) A(β′)
(α) A(β)

(α′)

 , (3)

where I = (a, α, α), J = (b, β, β), I, J...=1, ...,n +mp+q, t(α)
(σ) = tα1...αp

σ1...σq
, Aα′β =

∂xα′

∂xβ .

It is easily verified that the condition DetĀ , 0 is equivalent to the condition:

Det(Aa′
b ) , 0,Det(Aα

′

β ) , 0,Det(A(β′)
(α) A(β)

(α′)) , 0.

Also, dim tp
q(Bm)=n + mp+q. In the special case n=m, tp

q(Bm) is a tensor bundle Tp
q (Bm) [[6], p.118]. In

the special case, the semi-tensor bundles t1
0(Bm)

(
p = 1, q = 0

)
and t0

1(Bm)
(
p = 0, q = 1

)
are semi-tangent

and semi-cotangent bundles, respectively. We note that semi-tangent and semi-cotangent bundle were
examined in [[1], [7], [10]] and [[12], [14], [16], [17]], respectively. Also, Fattaev studied the special class
of semi-tensor bundle [2]. We denote by ℑp

q(tp
q(Bm)) and ℑp

q(Bm) the modules over F
(
tp
q(Bm)

)
and F (Bm) of

all tensor fields of type
(
p, q

)
on tp

q(Bm) and Bm respectively, where F
(
tp
q(Bm)

)
and F (Bm) denote the rings of

real-valued C∞ −functions on tp
q(Bm) and Bm, respectively.
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2. Some lifts of tensor fields and γ− Operator

Let X̃ ∈ I1
0 (Mn) be a projectable vector field [10] with projection X = Xα (Xα) ∂α i.e. X̃ = X̃a (xa, xα) ∂a +

Xα (xα) ∂α. On putting

ccX̃ =


ccX̃b

ccXβ
ccXβ̄

 =


X̃b

Xβ∑p
λ=1 tα1...ϵ...αp

β1...βq
∂εXβλ −

∑q
µ=1 tα1...αp

β1...ϵ......βq
∂βµXε

 (4)

we easily see that ccX̃ ′ = Ā
(

ccX̃
)
. The vector field ccX̃ is called the complete lift of X̃ to the semi-tensor

bundle tp
q (Bm) [15].

Now, consider A ∈ Ip
q (Bm) and φ ∈ I1

1 (Bm), then wA ∈ I1
0

(
tp
q (Bm) ) (vertical lift), γφ ∈ I1

0

(
tp
q (Bm) ) and

γφ ∈ I1
0

(
tp
q (Bm)

)
have respectively, components on the semi-tensor bundle tp

q (Bm) [15]

wA = (wA)I =


wAa

wAα
wAᾱ

 =


0
0
Aαp,...

β1,βq

 , γφ = (γφ)I =


0
0∑p
λ=1 tα1........αp

β1...βq
φαλε

 , (5)

On the other hand, vv f the vertical lift of function f ∈ I0
0 (Bm) on tp

q (Bm) is defined by [15]:

w f =v f ◦ π2 = f ◦ π1 ◦ π2 = f ◦ π. (6)

Let S ∈ J1
2 (Bm) now. If we take account of (3), we see that γS′ = Ā(γS) · γS is given by

γS =
(
(γS)I

J

)
=


0 0 0
0 0 0
0

∑p
λ=1 Sβλβεξ

β1...βp
α1...αq

0

 , (7)

with respect to the coordinates (xa, xα, xᾱ) on tp
q (Bm), where Sβλβε are local components of S.

Let S ∈ J1
2 (Bm) now. If we take account of (3), we see that γS′ = Ā(γS) · γS is given by

γS =
(
(γS)I

J

)
=


0 0 0
0 0 0
0

∑q
µ=1 Sβεβλξ

α1...αp

β1...ε...βq
0

 (8)

with respect to the coordinates (xa, xα, xᾱ) on tp
q (Bm), where Sβεβλ are local components of S.

3. Horizontal lifts of vector fields and γ−Operator

Let X̃ ∈ ℑ1
0(Mn) be a projectable vector field [10] with projection X = Xα(xα)∂α i.e. X̃ = X̃a(xa, xα)∂a +

Xα(xα)∂α. If we take account of (3), we can prove that HHX̃′ = Ā
(

HHX̃
)
, where HHX̃ is a vector field defined

by

HHX̃ =


X̃b

Xβ

Xl(
∑q
µ=1 Γ

ε
lβµ

tα1...αp

β1...ε...βq
−

∑p
λ=1 Γ

βλ
lε tα1...ε...αp

β1...βq
)

 , (9)

with respect to the coordinates (xb, xβ, xβ) on tp
q(Bm). We call HHX̃ the horizontal lift of the vector field of the

vector field X̃ to tp
q(Bm) [18].
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Theorem 3.1. For any vector fields X on Mn and S,T ∈ I1
2 (Bm) , φ ∈ I1

1 (Bm) ,A ∈ Ip
q (Bm), we have

(i) (γS)ccX = γ (SX),
(ii) (γS) (vA) = 0
(iii) (γS)(γφ) = 0
(iv) (γS)(γT) = 0.

Proof. (i) Using (4) and (7), we have

(γS)ccX =


0 0 0
0 0 0
0

∑p
λ=1 Sβλβεξ

β1.......βp
α1...αq

0




Xa∑α∑p
λ=1 tϕ1......ϕp

α1...αq
∂εXαλ −

∑q
µ=1 tϕ1...ϕp

α1.........αq
∂ϕµXε


=


0
0∑p

λ=1 Sβλβεξ
β1.......βp
α1...αq

Xα

 =


0
0∑p

λ=1 ξ
β1...ε....βp
α1...αq

(SX)βλε

 = γ (SX) .

(ii) Using (5) and (7), we have

(γS) (wvA) =


0 0 0
0 0 0
0

∑p
λ=1 Sβλβεξ

β1...ε...βp
α1...αq

0




0
0
Aϕ1...ϕp

β1...βq

 = 0.

(iii) Using (5) and (7), we have

(γS)(γφ) =


0 0 0
0 0 0
0

∑p
λ=1 Sβλβεξ

β1.......βp
α1...αq

0




0
0∑p
λ=1 tϕ1...ε...ϕp

β1...βq
φ
ϕλ
ε

 = 0.

(iv) Using (7), we have

(γS)(γT) =


0 0 0
0 0 0
0

∑p
λ=1 Sβλβεξ

β1...βp
α1...αq

0




0 0 0
0 0 0
0

∑p
λ=1 Tαλϕεξ

α1.......αp

ϕ1...ϕq
0

 = 0.

Theorem 3.2. For any vector fields X on Mn and S,T ∈ I1
2 (Bm) , φ ∈ I1

1 (Bm) , A ∈ Ip
q (Bm), we have

(i) (γS) = γ (SX),
(ii) (γS) (vvA) = 0,
(iii) (γS)(γφ) = 0,
(iv) (γS)(γT) = 0.

Proof. Using (4), (5) and (8), similarly, we obtain Theorem 3.2.

Theorem 3.3. If X ∈ I1
0 (Mn) ,S ∈ I1

2 (Bm), then

(γS)
(

HHX
)
= γ (SX) .

Proof. By (7) and (9), we obtain

(γS)
(

HHX
)
=


0 0 0
0 0 0
0

∑p
λ=1 Sβλβεξ

β1..........βp
α1...αq

0




Xa

Xα

Xl
(∑q
µ=1 Γ

ε
lαµ

tϕ1...ϕp
α1..........αq

−
∑p
λ=1 Γ

α2
lε tϕ1.......ϕp
α1...αq

)
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=


0
0∑p

λ=1 Sβλβεξ
β1.......βp
α1...αq

Xα

 =
(

0∑p
λ=1 ξ

β1......βp
α1...αq

(SX)βλε

)
= γ (SX) .

Theorem 3.4. If X ∈ I1
0 (Mn) ,S ∈ I1

2 (Bm), then

(γ̃S)
(

HHX
)
= γ̃ (SX) .

Proof. Using (8) and (9), similarly, we have Theorem 3.4.
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