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Integral Inequalities Involving Functions whose Partial Derivatives are
Exponentially Convex on the Co-ordinates

Sinan ASLANa

aAğrı Türk Telekom Social Sciences High School, Ağrı Türkiye

Abstract. In this paper, we establish several novel integral inequalities for functions whose partial deriva-
tives are exponentially convex with respect to each coordinate. To begin with, a new integral identity
is derived, which serves as a foundational tool for generating further inequalities. Utilizing well-known
classical inequalities, such as Hölder’s and Young’s inequalities, we derive a range of new upper bounds
and estimates. Furthermore, various special cases and corollaries of the main results are discussed to
highlight the applicability and generality of the obtained inequalities. These findings contribute to the
growing body of research on convexity-based analysis and may have potential implications in related areas
of mathematical inequalities and applied analysis.

1. Introduction

The concept of convexity plays a fundamental role in the theory of inequalities and has been extensively
studied and utilized by numerous researchers, particularly in the development and analysis of various
inequality results. Convex functions form the foundation of many classical and modern inequalities due
to their rich structural properties and wide applicability in both pure and applied mathematics. A formal
definition of convex functions can be found in [1].

Definition 1.1. (See [1]) Let I be an interval in R. Then, 𭟋 : I→ R is said to be convex, if

𭟋 (ζκ1 + (1 − ζ)κ2) ≤ ζ𭟋 (κ1) + (1 − ζ) 𭟋 (κ2)

holds for all κ1, κ2 ∈ I and ζ ∈ [0, 1] .

A fundamental motivation underlying the extensive study of generalized convexity concepts lies in the
pursuit of refining analytical bounds and extending the applicability of classical inequalities to broader
functional frameworks. In this context, a particularly noteworthy and analytically rich subclass of convex
functions—termed exponentially convex functions—has emerged, offering enhanced flexibility in various
inequality formulations. The formal definition of this class is presented below.
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Definition 1.2. (See [2]) A function 𭟋 : I ⊆ R −→ R is said to be exponentially convex function, if

𭟋 ((1 − ζ)κ1 + ζκ2) ≤ (1 − ζ)
𭟋(κ1)
eακ2

+ ζ
𭟋(κ2)
eακ2

for all κ1, κ2 ∈ I, α ∈ R and ζ ∈ [0, 1] .

As part of their contribution to the theory of generalized convexity, Aslan and Akdemir introduced the
notion of exponentially convex functions defined on the co-ordinates. The precise formulation of this class
is given below.

Definition 1.3. (See [3]) Let us consider the bidimensional interval ∆ = [κ1, κ2] × [κ3, κ4] in R2 with κ1 < κ2 and
κ3 < κ4. The mapping 𭟋 : ∆ −→ R is exponentially convex on the co-ordinates on ∆, if the following inequality holds,

𭟋 (ζκ1 + (1 − ζ)κ3, ζκ2 + (1 − ζ)κ4) ≤ ζ
𭟋(κ1, κ2)
eα(κ1+κ2)

+ (1 − ζ)
𭟋(κ3, κ4)
eα(κ3+κ4)

for all (κ1, κ2), (κ3, κ4) ∈ ∆, α ∈ R,and ζ ∈ [0, 1].

Building upon the previously stated definition of exponentially convex functions, Aslan and Akdemir
established an equivalent characterization applicable in the setting of co-ordinated convexity, which is
outlined as follows.

Definition 1.4. (see [3]) The mapping 𭟋 : ∆ −→ R is exponentially convex on the co-ordinates on ∆, if the following
inequality holds,

𭟋 (ζκ1 + (1 − ζ)κ2, ξκ3 + (1 − ξ)κ4)

≤ ζξ
𭟋(κ1, κ3)
eα(κ1+κ3)

+ ζ(1 − ξ)
𭟋(κ1, κ4)
eα(κ1+κ4)

+ (1 − ζ)ξ
𭟋(κ2, κ3)
eα(κ2+κ3)

+ (1 − ζ)(1 − ξ)
𭟋(κ2, κ4)
eα(κ2+κ4)

for all (κ1, κ3) , (κ1, κ4) , (κ2, κ3) , (κ2, κ4) ∈ ∆, α ∈ R and ζ, ξ ∈ [0, 1].

The formulation of convex functions on the co-ordinates naturally led to the question of whether the classical
Hermite–Hadamard inequality could be extended to functions defined on a rectangular domain inR2. This
insightful and motivating question was affirmatively addressed in a seminal work by Dragomir (see [4]),
wherein a generalized version of the Hermite–Hadamard inequality for co-ordinated convex functions
was established. This result has since become a foundational contribution in the literature, known as the
extension of the Hermite–Hadamard inequality from the real line to a rectangular domain in the plane R2

and is formally stated below.

Theorem 1.5. (see [4]) Suppose that 𭟋 : ∆ = [κ1, κ2] × [κ3, κ4]→ R is convex on the co-ordinates on ∆. Then, one
has the inequalities;

𭟋
(
κ1 + κ2

2
,
κ3 + κ4

2

)
≤

1
(κ2 − κ1)(κ4 − κ3)

∫ κ2

κ1

∫ κ4

κ3

𭟋(x, y)dxdy

≤
𭟋(κ1, κ3) + 𭟋(κ1, κ4) + 𭟋(κ2, κ3) + 𭟋(κ2, κ4)

4
.

The above inequalities are sharp.

Aslan and Akdemir have proved the following result for extending Theorem 1.5 to the framework of
exponentially convex functions defined on the co-ordinates, thereby enriching the theory of co-ordinated
convexity with a broader class of functions.

Theorem 1.6. (See [3]) Let 𭟋 : ∆ = [κ1, κ2]×[κ3, κ4]→ R be partial differentiable mapping on∆ = [κ1, κ2]×[κ3, κ4]
and 𭟋 ∈ L(∆), α ∈ R. If 𭟋 is exponential convex function on the co-ordinates on ∆, then the following inequality holds;

1
(κ2 − κ1) (κ4 − κ3)

∫ κ2

κ1

∫ κ4

κ3

𭟋(x, y)dxdy ≤
𭟋(κ1,κ3)
eα(κ1+κ3) +

𭟋(κ1,κ4)
eα(κ1+κ4) +

𭟋(κ2,κ3)
eα(κ2+κ3) +

𭟋(κ2,κ4)
eα(κ2+κ4)

4
.
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Several recent works have contributed significantly to the growing literature on exponential convex func-
tions and their extensions to the coordinate setting. For detailed discussions on their structural properties,
associated inequalities and potential applications, we refer the reader to the works presented in [5]-[17].

2. Main Resuls

Throughout this study, J is defined as follows.

J =
(κ4 − κ3) (κ2 − κ1)

72
[𭟋 (κ1, κ3) + 𭟋 (κ1, κ4) + 𭟋 (κ2, κ3) + 𭟋 (κ2, κ4)]

+
(κ4 − κ3) (κ2 − κ1)

18

[
𭟋
(
κ1,
κ3 + κ4

2

)
+ 𭟋

(
κ2,
κ3 + κ4

2

)]
−

(κ2 − κ1)
12

(∫ κ4

κ3

𭟋 (κ1, τ2) dτ2 +

∫ κ4

κ3

𭟋 (κ2, τ2) dτ2

)
+

(κ4 − κ3) (κ2 − κ1)
18

[
𭟋
(
κ1 + κ2

2
, κ3

)
+ 𭟋

(
κ1 + κ2

2
, κ4

)]
+

2 (κ4 − κ3) (κ2 − κ1)
9

𭟋
(
κ1 + κ2

2
,
κ3 + κ4

2

)
−

(κ2 − κ1)
3

∫ κ4

κ3

𭟋
(
κ1 + κ2

2
, τ2

)
dτ2

−
(κ4 − κ3)

12

(∫ κ2

κ1

𭟋 (τ1, κ3) dτ1 +

∫ κ2

κ1

𭟋 (τ1, κ4) dτ1

)
−

(κ4 − κ3)
3

∫ κ2

κ1

𭟋
(
τ1,
κ3 + κ4

2

)
dτ1 +

∫ κ2

κ1

∫ κ4

κ3

𭟋 (τ1, τ2) dτ1dτ2.

Lemma 2.1. Let 𭟋 : ∆ ⊆ R2
→ R be a function that is twice partially differentiable on the rectangle ∆ = [κ1, κ2] ×

[κ3, κ4], where κ1 < κ2 and κ3 < κ4. If the mixed second-order partial derivative ∂2𭟋
∂ζ∂ξ exists and belongs to L2 (∆),

then the following inequality holds:

J =
(κ4 − κ3)2 (κ2 − κ1)2

32

×

[∫ 1

0

∫ 1

0

(
ζ −

2
3

) (
ξ −

2
3

)
∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ2 +

1 − ζ
2
κ1,

1 + ξ
2
κ4 +

1 − ξ
2
κ3

)
dζdξ

+

∫ 1

0

∫ 1

0

(
ζ −

2
3

) (
ξ −

2
3

)
∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ1 +

1 − ζ
2
κ2,

1 + ξ
2
κ3 +

1 − ξ
2
κ4

)
dζdξ

+

∫ 1

0

∫ 1

0

(
ζ −

2
3

) (2
3
− ξ

)
∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ2 +

1 − ζ
2
κ1,

1 + ξ
2
κ3 +

1 − ξ
2
κ4

)
dζdξ

+

∫ 1

0

∫ 1

0

(2
3
− ζ

) (
ξ −

2
3

)
∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ1 +

1 − ζ
2
κ2,

1 + ξ
2
κ4 +

1 − ξ
2
κ3

)
dζdξ

]
.

Proof. Suppose that

G1 =

∫ 1

0

∫ 1

0

(
ζ −

2
3

) (
ξ −

2
3

)
∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ2 +

1 − ζ
2
κ1,

1 + ξ
2
κ4 +

1 − ξ
2
κ3

)
dζdξ,

G2 =

∫ 1

0

∫ 1

0

(
ζ −

2
3

) (
ξ −

2
3

)
∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ1 +

1 − ζ
2
κ2,

1 + ξ
2
κ3 +

1 − ξ
2
κ4

)
dζdξ,

G3 =

∫ 1

0

∫ 1

0

(
ζ −

2
3

) (2
3
− ξ

)
∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ2 +

1 − ζ
2
κ1,

1 + ξ
2
κ3 +

1 − ξ
2
κ4

)
dζdξ,

G4 =

∫ 1

0

∫ 1

0

(2
3
− ζ

) (
ξ −

2
3

)
∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ1 +

1 − ζ
2
κ2,

1 + ξ
2
κ4 +

1 − ξ
2
κ3

)
dζdξ.
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The following equations are obtained using partial integration in double integrals.

G1 =
4

9 (κ4 − κ3) (κ2 − κ1)
𭟋 (κ2, κ4) +

8
9 (κ4 − κ3) (κ2 − κ1)

𭟋
(
κ2,
κ3 + κ4

2

)
−

8

3 (κ4 − κ3)2 (κ2 − κ1)

∫ κ4

κ3+κ4
2

𭟋 (κ2, τ2) dτ2 +
8

9 (κ4 − κ3) (κ2 − κ1)
𭟋
(
κ1 + κ2

2
, κ4

)
+

16
9 (κ4 − κ3) (κ2 − κ1)

𭟋
(
κ1 + κ2

2
,
κ3 + κ4

2

)
−

16

3 (κ4 − κ3)2 (κ2 − κ1)

∫ κ4

κ3+κ4
2

𭟋
(
κ1 + κ2

2
, τ2

)
dτ2

−
8

3 (κ4 − κ3) (κ2 − κ1)2

∫ κ2

κ1+κ2
2

𭟋 (τ1, κ4) dτ1 −
16

3 (κ4 − κ3) (κ2 − κ1)2

∫ κ2

κ1+κ2
2

𭟋
(
τ1,
κ3 + κ4

2

)
dτ1

+
16

(κ4 − κ3)2 (κ2 − κ1)2

∫ κ2

κ1+κ2
2

∫ κ4

κ3+κ4
2

𭟋 (τ1, τ2) dτ1dτ2,

G2 =
4

9 (κ4 − κ3) (κ2 − κ1)
𭟋 (κ1, κ3) +

8
9 (κ4 − κ3) (κ2 − κ1)

𭟋
(
κ1,
κ3 + κ4

2

)
−

8

3 (κ4 − κ3)2 (κ2 − κ1)

∫ κ3+κ4
2

κ3

𭟋 (κ1, τ2) dτ2 +
8

9 (κ4 − κ3) (κ2 − κ1)
𭟋
(
κ1 + κ2

2
, κ3

)
+

16
9 (κ4 − κ3) (κ2 − κ1)

𭟋
(
κ1 + κ2

2
,
κ3 + κ4

2

)
−

16

3 (κ4 − κ3)2 (κ2 − κ1)

∫ κ3+κ4
2

κ3

𭟋
(
κ1 + κ2

2
, τ2

)
dτ2

−
8

3 (κ4 − κ3) (κ2 − κ1)2

∫ κ1+κ2
2

κ1

𭟋 (τ1, κ3) dτ1 −
16

3 (κ4 − κ3) (κ2 − κ1)2

∫ κ1+κ2
2

κ1

𭟋
(
τ1,
κ3 + κ4

2

)
dτ1

+
16

(κ4 − κ3)2 (κ2 − κ1)2

∫ κ1+κ2
2

κ1

∫ κ3+κ4
2

κ3

𭟋 (τ1, τ2) dτ1dτ2,

G3 =
4

9 (κ4 − κ3) (κ2 − κ1)
𭟋 (κ2, κ3) +

8
9 (κ4 − κ3) (κ2 − κ1)

𭟋
(
κ2,
κ3 + κ4

2

)
−

8

3 (κ4 − κ3)2 (κ2 − κ1)

∫ κ3+κ4
2

κ3

𭟋 (κ2, τ2) dτ2 +
8

9 (κ4 − κ3) (κ2 − κ1)
𭟋
(
κ1 + κ2

2
, κ3

)
+

16
9 (κ4 − κ3) (κ2 − κ1)

𭟋
(
κ1 + κ2

2
,
κ3 + κ4

2

)
−

16

3 (κ4 − κ3)2 (κ2 − κ1)

∫ κ3+κ4
2

κ3

𭟋
(
κ1 + κ2

2
, τ2

)
dτ2

−
8

3 (κ4 − κ3) (κ2 − κ1)2

∫ κ2

κ1+κ2
2

𭟋 (τ1, κ3) dτ1 −
16

3 (κ4 − κ3) (κ2 − κ1)2

∫ κ2

κ1+κ2
2

𭟋
(
τ1,
κ3 + κ4

2

)
dτ1

+
16

(κ4 − κ3)2 (κ2 − κ1)2

∫ κ2

κ1+κ2
2

∫ κ3+κ4
2

κ3

𭟋 (τ1, τ2) dτ1dτ2,
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G4 =
4

9 (κ4 − κ3) (κ2 − κ1)
𭟋 (κ1, κ4) +

8
9 (κ4 − κ3) (κ2 − κ1)

𭟋
(
κ1,
κ3 + κ4

2

)
−

8

3 (κ4 − κ3)2 (κ2 − κ1)

∫ κ4

κ3+κ4
2

𭟋 (κ2, τ2) dτ2 +
8

9 (κ4 − κ3) (κ2 − κ1)
𭟋
(
κ1 + κ2

2
, κ4

)
+

16
9 (κ4 − κ3) (κ2 − κ1)

𭟋
(
κ1 + κ2

2
,
κ3 + κ4

2

)
−

16

3 (κ4 − κ3)2 (κ2 − κ1)

∫ κ4

κ3+κ4
2

𭟋
(
κ1 + κ2

2
, τ2

)
dτ2

−
8

3 (κ4 − κ3) (κ2 − κ1)2

∫ κ1+κ2
2

κ1

𭟋 (τ1, κ4) dτ1 −
16

3 (κ4 − κ3) (κ2 − κ1)2

∫ κ1+κ2
2

κ1

𭟋
(
τ1,
κ3 + κ4

2

)
dτ1

+
16

(κ4 − κ3)2 (κ2 − κ1)2

∫ κ1+κ2
2

κ1

∫ κ4

κ3+κ4
2

𭟋 (τ1, τ2) dτ1dτ2.

Summing G1,G2,G3 and G4 and multiplying both scans by (κ2−κ1)2(κ4−κ3)2

32 gives the desired result.

Theorem 2.2. Let 𭟋 : ∆ ⊆ R2
→ R be partial differentiable mapping on ∆ = [κ1, κ2] × [κ3, κ4], where κ1 < κ2 and

κ3 < κ4,
∣∣∣ ∂2𭟋
∂ζ∂ξ

∣∣∣ ∈ L2 (∆) , α ∈ R. If |∂𭟋| ∈ L2 is exponentially convex function on the co-ordinates on ∆, then the
following inequality holds;

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2 52

3.212
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

 .

Proof. Using the Lemma 2.1 and the absolute value property of integrals, we get;

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32

×

[∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ2 +

1 − ζ
2
κ1,

1 + ξ
2
κ4 +

1 − ξ
2
κ3

)∣∣∣∣∣∣ dζdξ
+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ1 +

1 − ζ
2
κ2,

1 + ξ
2
κ3 +

1 − ξ
2
κ4

)∣∣∣∣∣∣ dζdξ
+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣23 − ξ
∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ2 +

1 − ζ
2
κ1,

1 + ξ
2
κ3 +

1 − ξ
2
κ4

)∣∣∣∣∣∣ dζdξ
+

∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣ ∣∣∣∣∣ξ − 2

3

∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ1 +

1 − ζ
2
κ2,

1 + ξ
2
κ4 +

1 − ξ
2
κ3

)∣∣∣∣∣∣ dζdξ
]
.
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Using the exponentially convex property of
∣∣∣ ∂2𭟋
∂ζ∂ξ

∣∣∣, then the following inequality is obtained;

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32

×

[∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣ ×
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

 dζdξ

+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣ ×
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

 dζdξ

+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣23 − ξ
∣∣∣∣∣ ×

(1 + ζ
2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

 dζdξ

+

∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣ ∣∣∣∣∣ξ − 2

3

∣∣∣∣∣ ×
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

 dζdξ

 .
The necessary algebraic operations are performed and the following result is obtained by integrating
separately with respect to ζ and ξ.

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2 52

3.212

×


∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

 .

Corollary 2.3. Under the conditions of Theorem 2.2, if α = 0 is taken, the result is the convexity result in the
co-ordinates as follows.

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2 52

3.212

×

(∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ2, κ3)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ1, κ4)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ2, κ4)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ1, κ3)

∣∣∣∣∣∣
)
.

Theorem 2.4. Let 𭟋 : ∆ ⊆ R2
→ R be partial differentiable mapping on ∆ = [κ1, κ2] × [κ3, κ4], where κ1 < κ2 and

κ3 < κ4,
∣∣∣ ∂2𭟋
∂ζ∂ξ

∣∣∣q ∈ L2 (∆) , q > 1 and α ∈ R. If |∂𭟋| ∈ L2 is exponentially convex function on the co-ordinates on ∆,
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then the following inequality holds;

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

128

(
2p+1 + 1

3p+1 (
p + 1

) ) 2
p


(
2q+1
− 1

) 1
q
+ 1(

q + 1
) 1

q


2

×


∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

 ,
where p−1 + q−1 = 1.

Proof. Using the Lemma 2.1 and the absolute value property of integrals, we get;

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32

×

[∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ2 +

1 − ζ
2
κ1,

1 + ξ
2
κ4 +

1 − ξ
2
κ3

)∣∣∣∣∣∣ dζdξ
+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ1 +

1 − ζ
2
κ2,

1 + ξ
2
κ3 +

1 − ξ
2
κ4

)∣∣∣∣∣∣ dζdξ
+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣23 − ξ
∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ2 +

1 − ζ
2
κ1,

1 + ξ
2
κ3 +

1 − ξ
2
κ4

)∣∣∣∣∣∣ dζdξ
+

∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣ ∣∣∣∣∣ξ − 2

3

∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ1 +

1 − ζ
2
κ2,

1 + ξ
2
κ4 +

1 − ξ
2
κ3

)∣∣∣∣∣∣ dζdξ
]
.

Using the exponentially convex property of
∣∣∣ ∂2𭟋
∂ζ∂ξ

∣∣∣q , then the following inequality is obtained;

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32

×

[∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

 dζdξ

+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

 dζdξ

+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣23 − ξ
∣∣∣∣∣
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

 dζdξ

+

∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣ ∣∣∣∣∣ξ − 2

3

∣∣∣∣∣
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

 dζdξ

 .
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Applying Hölder’s inequality to the right-hand side yields the following.

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32
×


(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣q
eqα(κ2+κ4)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣q
eqα(κ2+κ3)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣q
eqα(κ1+κ4)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣q
eqα(κ1+κ3)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣q
eqα(κ1+κ3)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣q
eqα(κ1+κ4)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣q
eqα(κ2+κ3)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣q
eqα(κ2+κ4)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣23 − ξ
∣∣∣∣∣p dζdξ

) 1
p

∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣q
eqα(κ2+κ3)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣23 − ξ
∣∣∣∣∣p dζdξ

) 1
p

∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣q
eqα(κ2+κ4)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣23 − ξ
∣∣∣∣∣p dζdξ

) 1
p

∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣q
eqα(κ1+κ3)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣23 − ξ
∣∣∣∣∣p dζdξ

) 1
p

∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣q
eqα(κ1+κ4)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣p ∣∣∣∣∣23 − ξ

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣q
eqα(κ1+κ4)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣p ∣∣∣∣∣23 − ξ

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣q
eqα(κ1+κ3)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣p ∣∣∣∣∣23 − ξ

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣q
eqα(κ2+κ4)

dζdξ


1
q

+

(∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣p ∣∣∣∣∣23 − ξ

∣∣∣∣∣p dζdξ
) 1

p

∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣q
eqα(κ2+κ3)

dζdξ


1
q
 .
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The necessary algebraic operations are performed and the following result is obtained by integrating
separately with respect to ζ and ξ.

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32
×

(
2p+1 + 1

3p+1 (
p + 1

) ) 2
p

×

( 2q+1
− 1

2q (q + 1
) ) 2

q

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)


+2

 2q+1
− 1

4q (q + 1
)2


1
q

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)


+

(
1

2q (q + 1
) ) 2

q

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)


 .

By making the necessary adjustments, the following result is obtained.

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

128

(
2p+1 + 1

3p+1 (
p + 1

) ) 2
p


(
2q+1
− 1

) 1
q
+ 1(

q + 1
) 1

q


2

×


∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

 .

Corollary 2.5. Under the conditions of Theorem 2.4, if α = 0 is taken, the result is the convexity result in the
co-ordinates as follows.

|J2| ≤
(κ4 − κ3)2 (κ2 − κ1)2

128

(
2p+1 + 1

3p+1 (
p + 1

) ) 2
p


(
2q+1
− 1

) 1
q
+ 1(

q + 1
) 1

q


2

×

(∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ2, κ3)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ1, κ4)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ2, κ4)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ1, κ3)

∣∣∣∣∣∣
)
.

Theorem 2.6. Let 𭟋 : ∆ ⊆ R2
→ R be partial differentiable mapping on ∆ = [κ1, κ2] × [κ3, κ4], where κ1 < κ2 and

κ3 < κ4,
∣∣∣ ∂2𭟋
∂ζ∂ξ

∣∣∣q ∈ L2 (∆) , q > 1 and α ∈ R. If |∂𭟋| ∈ L2 is exponentially convex function on the co-ordinates on ∆,
then the following inequality holds;

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32
×

16
p

(
2p+1 + 1

3p+1 (
p + 1

) )2

+
4

q
(
q + 1

)2

×


∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)


 ,

where p−1 + q−1 = 1.
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Proof. Using the Lemma 2.1 and the absolute value property of integrals, we get;

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32

×

[∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ2 +

1 − ζ
2
κ1,

1 + ξ
2
κ4 +

1 − ξ
2
κ3

)∣∣∣∣∣∣ dζdξ
+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ1 +

1 − ζ
2
κ2,

1 + ξ
2
κ3 +

1 − ξ
2
κ4

)∣∣∣∣∣∣ dζdξ
+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣23 − ξ
∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ2 +

1 − ζ
2
κ1,

1 + ξ
2
κ3 +

1 − ξ
2
κ4

)∣∣∣∣∣∣ dζdξ
+

∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣ ∣∣∣∣∣ξ − 2

3

∣∣∣∣∣
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ

(1 + ζ
2
κ1 +

1 − ζ
2
κ2,

1 + ξ
2
κ4 +

1 − ξ
2
κ3

)∣∣∣∣∣∣ dζdξ
]
.

Using the exponentially convex property of
∣∣∣ ∂2𭟋
∂ζ∂ξ

∣∣∣q , then the following inequality is obtained;

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32

×

[∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

 dζdξ

+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

 dζdξ

+

∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣ ∣∣∣∣∣23 − ξ
∣∣∣∣∣
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

 dζdξ

+

∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣ ∣∣∣∣∣ξ − 2

3

∣∣∣∣∣
(1 + ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+
(1 + ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)

+
(1 − ζ

2

) (1 + ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+
(1 − ζ

2

) (1 − ξ
2

) ∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

 dζdξ

 .
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Applying Young’s inequality to the right-hand side yields the following.

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32

×

[
1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣q
eqα(κ2+κ4)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣q
eqα(κ2+κ3)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣q
eqα(κ1+κ4)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣q
eqα(κ1+κ3)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣q
eqα(κ1+κ3)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣q
eqα(κ1+κ4)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣q
eqα(κ2+κ3)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣ξ − 2
3

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣q
eqα(κ2+κ4)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣23 − ξ
∣∣∣∣∣p dζdξ

)
+

1
q


∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣q
eqα(κ2+κ3)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣23 − ξ
∣∣∣∣∣p dζdξ

)
+

1
q


∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣q
eqα(κ2+κ4)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣23 − ξ
∣∣∣∣∣p dζdξ

)
+

1
q


∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣q
eqα(κ1+κ3)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣ζ − 2
3

∣∣∣∣∣p ∣∣∣∣∣23 − ξ
∣∣∣∣∣p dζdξ

)
+

1
q


∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣q
eqα(κ1+κ4)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣p ∣∣∣∣∣23 − ξ

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣q
eqα(κ1+κ4)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣p ∣∣∣∣∣23 − ξ

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 + ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣q
eqα(κ1+κ3)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣p ∣∣∣∣∣23 − ξ

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 + ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣q
eqα(κ2+κ4)

dζdξ


+

1
p

(∫ 1

0

∫ 1

0

∣∣∣∣∣23 − ζ
∣∣∣∣∣p ∣∣∣∣∣23 − ξ

∣∣∣∣∣p dζdξ
)
+

1
q


∫ 1

0

∫ 1

0

(1 − ζ
2

)q (1 − ξ
2

)q
∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣q
eqα(κ2+κ3)

dζdξ


 .
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The necessary algebraic operations are performed and the following result is obtained by integrating
separately with respect to ζ and ξ.

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32

16
p

(
2p+1 + 1

3p+1 (
p + 1

) )2

+
1
q

(
2q+1
− 1

2q (q + 1
) )2


∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)


+

2
q

 2q+1
− 1

4q (q + 1
)2



∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)


+

1
q

(
1

2q (q + 1
) )2


∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)


 .

By making the necessary adjustments, the following result is obtained.

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32
×

16
p

(
2p+1 + 1

3p+1 (
p + 1

) )2

+
4

q
(
q + 1

)2

×


∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ3)

∣∣∣
eα(κ2+κ3)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ4)

∣∣∣
eα(κ1+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ2, κ4)

∣∣∣
eα(κ2+κ4)

+

∣∣∣ ∂2𭟋
∂ζ∂ξ (κ1, κ3)

∣∣∣
eα(κ1+κ3)


 .

Corollary 2.7. Under the conditions of Theorem 2.6, if α = 0 is taken, the result is the convexity result in the
co-ordinates as follows.

|J| ≤
(κ4 − κ3)2 (κ2 − κ1)2

32
×

16
p

(
2p+1 + 1

3p+1 (
p + 1

) )2

+
4

q
(
q + 1

)2

×

(∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ2, κ3)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ1, κ4)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ2, κ4)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂2𭟋

∂ζ∂ξ
(κ1, κ3)

∣∣∣∣∣∣
)]
.
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