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Integral Inequalities Involving Functions whose Partial Derivatives are
Exponentially Convex on the Co-ordinates

Sinan ASLAN?

®Agri Tiirk Telekom Social Sciences High School, Agrt Tiirkiye

Abstract. In this paper, we establish several novel integral inequalities for functions whose partial deriva-
tives are exponentially convex with respect to each coordinate. To begin with, a new integral identity
is derived, which serves as a foundational tool for generating further inequalities. Utilizing well-known
classical inequalities, such as Holder’s and Young’s inequalities, we derive a range of new upper bounds
and estimates. Furthermore, various special cases and corollaries of the main results are discussed to
highlight the applicability and generality of the obtained inequalities. These findings contribute to the
growing body of research on convexity-based analysis and may have potential implications in related areas
of mathematical inequalities and applied analysis.

1. Introduction

The concept of convexity plays a fundamental role in the theory of inequalities and has been extensively
studied and utilized by numerous researchers, particularly in the development and analysis of various
inequality results. Convex functions form the foundation of many classical and modern inequalities due
to their rich structural properties and wide applicability in both pure and applied mathematics. A formal
definition of convex functions can be found in [1].

Definition 1.1. (See [1]) Let I be an interval in R. Then, F : I — R is said to be convex, if
F(Cxi+(1=0x2) <CF (k1) +(1-0OF (x2)

holds for all k1,x € I and C € [0,1].

A fundamental motivation underlying the extensive study of generalized convexity concepts lies in the
pursuit of refining analytical bounds and extending the applicability of classical inequalities to broader
functional frameworks. In this context, a particularly noteworthy and analytically rich subclass of convex
functions—termed exponentially convex functions—has emerged, offering enhanced flexibility in various
inequality formulations. The formal definition of this class is presented below.
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Definition 1.2. (See [2]) A function F : I SR — R is said to be exponentially convex function, if

Fe) | Fl)

eﬂh’z eDth

FI(A-0wx1+Ck2) <(1-0)

forall ki, ky € ,a e Rand C € [0,1].

As part of their contribution to the theory of generalized convexity, Aslan and Akdemir introduced the
notion of exponentially convex functions defined on the co-ordinates. The precise formulation of this class
is given below.

Definition 1.3. (See [3]) Let us consider the bidimensional interval A = [k1,12] X [x3, k4] in R? with k1 < x and
k3 < k4. The mapping F : A — R is exponentially convex on the co-ordinates on A, if the following inequality holds,
F F

(k1,72) 1-0) (k3, K4)

p(Kka+Ks)

F(Ck1i+(1-0x3,Cka+(1-0xy) <C

e(X(K1+K2)
forall (x1,12), (k3,%4) € A, € Rand C € [0, 1].

Building upon the previously stated definition of exponentially convex functions, Aslan and Akdemir
established an equivalent characterization applicable in the setting of co-ordinated convexity, which is
outlined as follows.

Definition 1.4. (see [3]) The mapping F : A — R is exponentially convex on the co-ordinates on A, if the following
inequality holds,

F(Cr1+ (1 =0y, Exs+ (1 —&)Ka)
< etk g gfuk) g g

ea(m +K3) ea(m +K4)

F(K2I K3)

ea(Kk2+K3)

F(x, x4)

ea(xz+1<4)

+(1-00-9)

for all (x1,%3), (k1,K4) , (x2,%3) , (K2, k1) € A, € Rand C, & € [0, 1].

The formulation of convex functions on the co-ordinates naturally led to the question of whether the classical
Hermite-Hadamard inequality could be extended to functions defined on a rectangular domain in IR?. This
insightful and motivating question was affirmatively addressed in a seminal work by Dragomir (see [4]),
wherein a generalized version of the Hermite-Hadamard inequality for co-ordinated convex functions
was established. This result has since become a foundational contribution in the literature, known as the
extension of the Hermite-Hadamard inequality from the real line to a rectangular domain in the plane R?
and is formally stated below.

Theorem 1.5. (see [4]) Suppose that F : A = [k1, k2] X [x3, ka] = R is convex on the co-ordinates on A. Then, one

has the inequalities;
K1+ Ky K3+ Ky 1 2 e
F( , ) < f f F(x, y)dxd
2 2 ) e ), ), TonBdy

< F(xc1, 13) + F(x1, k4) + F(K2, x3) + F(K2, K4)
< 1 .

The above inequalities are sharp.

Aslan and Akdemir have proved the following result for extending Theorem 1.5 to the framework of
exponentially convex functions defined on the co-ordinates, thereby enriching the theory of co-ordinated
convexity with a broader class of functions.

Theorem 1.6. (See[3]) Let F : A = [«4, k2]X[«3, ka] — Rbe partial differentiable mapping on A = [k1, k2] X[x3, k4]
and F € L(A), a € R. IfF is exponential convex function on the co-ordinates on A, then the following inequality holds;

Flais) | k) | Floxs) | Flicoks)
Ea(v:]+rr3) + ea(1<1+1<4) + ea(x2+x3) + ea(x2+1:4)

1 K2 Kq
F(x, y)dxdy <
(12 = 1) (ks — ®3) .L «L iy !
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Several recent works have contributed significantly to the growing literature on exponential convex func-
tions and their extensions to the coordinate setting. For detailed discussions on their structural properties,
associated inequalities and potential applications, we refer the reader to the works presented in [5]-[17].
2. Main Resuls

Throughout this study, | is defined as follows.

] (g — 3) (2 — K1)

= 7 [F (k1,x3) + F (11, k4) + F (12, x3) + F (12, €4)]
(K4—K3)(K2—K1)[ ( K3+K4) ( K3+K4)]
+ 3 F(x, > + F (%, >

—@( f F (x1, T2) Ty + f F(Kz,’fz)d’fz)

+(K4 - k3) (k2 — K1) [F(Kl + K2,K3) +F(Kl Al Kz,m)]

18 2 2
— — - i
+2(1(4 K39) (2 Kl)F(Kl 42‘ KZ, K3 ;‘ K4) _ (k= x1) f F(& ; Kz,’l’z)d’(z

—(K41_2K3)(f F(T1,K3)dT1+f F(T1,K4)dT1)

_ Ko K2 K4
(k4 > K3) f F(T1, K3 ‘5 K4)dﬁ + f f F (1, 72) dT1ds.
K1 K1 K3

Lemma 2.1. Let F : A € R* — R be a function that is twice partially di}j‘erentiable on the rectangle A = [x1, x2] X

[ks, k4], where k1 < k2 and k3 < k4. If the mixed second-order partial derivative 2 az:ag exists and belongs to Ly (A),
then the following inequality holds:

] = (k4 — K3)2 (K2 - 1<1)2

2 2\ PF (1 1-C 1 1-
Uf _5 ")&cag( ;C"” 2CK1’ ;EK“ 25"3)’%‘15

+fofo C—%)(a—g);;( zc’ﬁ 1;CK211;5K3+125 )dcdg
+f01f01(c_§)(§_5);£§£( ZCKZ 1;CK1/1;5K3+1;5 )dcd,g

+f01 fol(é _C)(é %) ;ngg( erCKl + 1;CK2r 1J2r£1<4+ 125K3)dCdé].

Proof. Suppose that

G = Olfol(C—é)(é—é)awé(lgcxz e, b s b,
= olfol(c_%)(5_5)(9%2;5(1?"1 o g e
G olfol(c‘%)(%‘g)agé(lgc’q 1;C 1’1;5K3+1;5K4)dcd5’
oum [ [ Gl 35+ e e s



S. Aslan /TJOS 10 (1), 22-34

The following equations are obtained using partial integration in double integrals.

4 8 ( K3+K4)

Cr = 9 (k4 — x3) (K2 — Kl)F(KZ/ Ka) + 9 (k4 — x3) (K2 — K1) 2

8 fK4 K1+ Kz
- F (x2, 12)dTy + F( )
3 (ks — k3)" (k2 — K1) J g (2, T2} T2 9 (kg — K3) (Kz - K1)
+ 16 (K1+K2 K3+K4) f
9 (kg — x3) (2 — K1) 2 72 3(xy — K3) (ko — 1) Ja

)
8 *2 K3 + Ky
- F(t1,x4)dT1 — 5 F )dTl
3 (ks — K3) (k2 — K1) J21g2 3 (k4 — Ks) (Kz - K1) Ja2

16 4
f F (11, 12)dtidTs,
7\'1 +K2 K3+K4
2 2

K1+ K
F M T R2

Tz)d’cz

(k4 — K3)2 (k2 — 1<1)2

4 8 K3 + K4
G, = F (x1,x3) + ( )
2 9 (14 — x3) (K2 — K1) (1, 7¢5) I(ks—k3) (ka —11) \ 7 2
K3+Ky
8 7 K1+ Kz
- F (x1,T0)dto + F( )
3 (kg — k3)* (k2 — K1) Jrs 1, 72) T2 9 (kg — K3) (2 — x1)
’\3+1\4
16 K1+ Ky K3+ Ky Kl + K2
+ F( , ) f ,T )d’l’
9 (k4 — x3) (kK2 — K1) 2 2 3 (x4 — K3) (Kz —%x1) 2
— 8 5 F(Tl,Kg)dTl 5 f K3+K4)d1’1
3 (kg — x3) (k2 — %1)" iy 3 (kg — K3) (Kz — K1)
K1+K2 K3+K4
16 B A
F (11, 12) dtidTy,
(x4 — K3)2 (12 — Kl)2 K1 K3
4 8 K3+ Ky
G = F(x ,K3) + F(K ’ )
’ 9 (k4 — x3) (K2 — x1) (12, 3) I(kg—x3) (2 —1c1) \ > 2
8 % 1+ Kz
- F (x>, T0) dtor + F( )
3 (kg — K3)° (k2 — K1) Jrs (2, T2) 9 (ks — Ks) (k2 = x1)
K3+K4
16 K1+ Ky K3+ Ky K1+K2
+ F( , ) f — T )d’c
9 (k4 — x3) (K2 — K1) 2 2 3 (kg — 1<3) (2 — %1) Jrs 2)
_ 8 . f F(t1, i3) dT1 — f F ks K4)dT1
3 (g — k3) (K2 — K1)” J2 3 (kg — K3) (Kz — 1) Juge

K3+Ky

16 f fz F (11, 12) dtd7),

(k4 = K3)* (k2 — 11)* Sz i,
2

25
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4 8

Ci = 9 (k4 — x3) (K2 — Kl)F(Kl' Ka) 9 (k4 — x3) (K2 — K1)

8 " K1+K2
- F (2, T2) d7r + F( )
Z(Kz—Kl)f“f“ (2, 12} 2 9(K4—1<3)(1<2—K1)

F(K1, K3 + K4)

2

3 (x4 — x3)
16 K1+ K2 K3+ Kg Kl + K2
+ F( , ) f LT )dT
9 (xg — x3) (k2 — K1) 2 2 3 (k4 — x3) (Kz — ) J z)=t2
. +
- 8 5 F(Tl,K4) dT1 5 f KS K4)d’l’1
3 (kg — x3) (kK2 — %1)" iy 3 (kg — K3) (Kz - K1)
K1+K2 "
16 2 fM
F (Tl, ’[2) dTldTg.
(k4 — x3)* (k2 — K1) LA

Summing G1, G, Gz and G4 and multiplying both scans by w gives the desired result. [

Theorem 2.2. Let F: A C R> - R be partial differentiable mapping on A = [x1, k2] X [k3, k4], where 11 < kp and
K3 < Kg, % € Ly (A),a € R. If|0F| € Ly is exponentially convex function on the co-ordinates on A, then the
following inequality holds;

N < (k4 — 13)° (k2 — 11)° 52
- 3.212

|99c2_aF§ (x2, K3)| |£—9F5 (K11K4)} (59;—32 (2, K4)| )% (Kl’K3)|

pa(k2+x3) ea(k1+Ky) pa(K2+Ky) ea(k1+x3)

Proof. Using the Lemma 2.1 and the absolute value property of integrals, we get;

Il < (k4 — K3)2 (k2 — Kl)z
- 32

I e e
+f01f01 C—%’ 5-%' afgé(lzc’ﬂ’f156"2'1;5"3*1557‘4) acds
+f1f1 C—%’ %‘EI (gé(lchﬁ1;CK1'1;€"3+1;£"4) et

2 o2 (e e e L]
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21|, then the following inequality is obtained;

7 < (K4—K3)2(K2—K1)2
0 e e 595 e
+<1;C><1f>'aiaifs;:‘“'+ 29

|acag 1<1,1<3 (1+C)(1—5)|%FE(K1,K4)|

pa(k1+K3) 2 2 ealr1+xs)

AFEEESE

+(1—C)(1+5)|acaé (KZ'K3)|+ 1- C) 1- )|ac95 K2, K 4)|

2 2 ea(K2+K3
2 ' ' 2
3113

<
|
<

S f {95
<
|
<

a(Ka+Kkys)

]dCdé

a(ka+K3) 2 2 ea(K2+14)

+(1 C)(l+5)|3Cag (Kl'K3)|+ = C) - )|9€9‘v = 4)|]dCd§

2 2 pa(i1+13) (K1 +K4)

35z (<1, 4)| (1 +C)(1 —é) |55 (1, x3)]
2

B-dl-3{(50

+(1 C)(1+5)|9C95 (KZ,K4)|+ 1- C) 1- )|8C9g K2, 3>|]dCdé}.

2 2 pa(ica+icy) pa(K2+K3)

K1+K4)

2

ea(k1+x3)

(
)
=
)|,9@(<1<2,K3 (1+c)(1—5)|9’9¢2—a§(1<2,1<4)|
=
)
=

The necessary algebraic operations are performed and the following result is obtained by integrating
separately with respect to C and &.

(k4 — 13)" (162 — 11)* 52

I <

3.212
2 2 2 2
)% (2, K3)| (;C—(;Z (K11K4)| |,93C—9Fg (x2, K4)) % (K1,K3)(
ea(k2+x3) pa(k1+ky) pa(ka+xky) ea(K1+K3)

O

Corollary 2.3. Under the conditions of Theorem 2.2, if a« = 0 is taken, the result is the convexity result in the
co-ordinates as follows.

(k4 — %3)* (12 — 71)* 5

3.212
2

(8F

IJ1

IA

PF

9CIE (2, K3)| + 8(_,(9«5 (x1,%3)

Theorem 2.4. Let F: A CRZ — Rbe partial differentiable mapping on A = [x1, 2] X [k3, k4], where 11 < Ky and
K3 < Kg, l% e Ly (A),q > 1and a € R. If |0F| € L, is exponentially convex function on the co-ordinates on A,

8C85 (K1,K4) 8C85 (KZ,K4)
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then the following inequality holds;

2

1
n < <K4—K3>2<K2—K1)2( 2 41 ) (r-1)"+1
= 128 3 (p+1) (g +1)
|é9£—,9'2(1<2,?<4))

ea(K2+1<4)

|5 (1, 4)|

p(k1+Ks)

ea(i2+13) ea(x1+%3)

X[% (12, 3)|

|25 <K1,K3>1]
7

where p™t +g71 = 1.

Proof. Using the Lemma 2.1 and the absolute value property of integrals, we get;

Il

(k4 — 13)% (k2 — 11)°

Il
L L Rt
S e e et
[ LTS - (s e e
e

7, then the following inequality is obtained;

(k4 — K3) (Kz — 1)

Uf

+(1;C)(1§5)'T2;i1‘:;§‘"‘

Hé__’( 1+C (1+5)|8c09 (K2r’<4)|+(1+C)(1—é)|59c2_a§(1<2,1<3)|

2 p(Kka+Ks) 2 2 pa(ka+K3)

(7)) )%(Kl'@']dcbié

2 ealr1+x3)

2 p(K1+13) 2 2 ea(k1+Ks)

C— -Hg_ _‘[ 1+¢ (1 +5) |25 (1, 163)| +(1+C)(1—g) | 2L (1, 10)|

+(1—C)(1+£) |55 (2, 1c3)| +(1—C)(1—5) )aaf—afs(@rmﬂ]d%

2 2 pa(ko+Ks3) 2 2 etv(Ka+Kq)
C— —5 1+C 1+£)‘9@5(K2,K3)|+(1+C)(1—§)|£—£§(K2,K4)(
3|13 e(Kka+K3) 2 2 e(ia+y)
2
+(1 - C)(l + é) |m (KLKa)( .\ (1 - C_,)(l -~ 5) |25 (e, )| dCdE
2 2 ea(K1+K3) 2 2 ea(K1+K4)

_—CHé—_‘{ 1+C (1+c§)‘aca.s (K1,1<4)| +(1+C)(1—5)|%(K1,K3)(

2 pa(K1+Ky) 2 2 ea(k1+K3)

+<1;C)<1;é>'f§;iff;::”'+<1;C><1f>’%ii‘fé!f)'deél

28
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Applying Holder’s inequality to the right-hand side yields the following.

R e (WU (= CR IV
: f f 1+c 1— |8sz§a((:2+’m3)| dcde
e e
1 f f 1 C 1— |ac§a((zl+’;3)| dcde
;ff 1+C 1+é |aczia((fl:<3)3)| dcde
; f f 1+c 1— |%Zia((zl+,§)| dcde
; f f 1 c 1+5 |8C‘Z;a((r<22;1<33)| cds
3 f f 1 c 1 é |ac§a((f+’:;“)| Acds

] |
] |
] |
] |
] |
] |
] |
AL [P
] |
] |
] |
] (s
] |
] |
] |

2P 2
C—§ <3 dcdé

2 2
C—g &= 3| dtde

= =

N

==

eqa(m +K3)

’ 1 + C 1 - |acaé (ie2, 4)|

f f eﬂ“(h2+K4) dCdé
v 1 C 1 + E |3C3€ (x1, K3)|

f f eqa(m +K3) dCdé
P 1 c 1 5 EEACH

f f eqaki+ia) dcds
v 1 + c 1 + g | 2L (i1, )| -

efa(rki+xs)

r 1 + C 1 - |8C8£ (Klr 3)|

f f eqa(m+1<3 dCdé
v 1 c 1 + g | 2L (12, 10)|

f f gqa(hz+1<4) dCdé

59 |

==

=
S —
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The necessary algebraic operations are performed and the following result is obtained by integrating
separately with respect to C and &.

2
(ks — K3)> (1 — 1)° ( 2741 )”

I < +1
2 3(p+1)
2 2 2
o1t _ 1 \1 (|8 (aks)| |k (ens)| | (ko ka)| |k (1, 73)|
29 (q + ]_) e(k2+K3) pa(K1+1s) pa(Ko+iky) ea(x1+x3)
o1\ (|2 K)I |25 (e, )| (k2,k4)| |20 (i1, 763))|
+2 2 -1 CE 2, K3 TIE 1, K4 (9(’(95 2, K4 JCIE 1, K3
49 (q + 1)2 e(Kk2+13) pa(k1+Kg) pa(ko+ky) ealr1+x3)
2 2 2 2 2
1 q |(9‘2:—(9'2(1<2,1<3)| |£:—(92(K1,K4)) (;acaFg K2,K4)| |§2;,9F£ (Kl,K3)|
24 (q + 1) ea(K2+K3) e[)l(K1+1<4) ea(K2+1 ) ea(1<1+1<3)

By making the necessary adjustments, the following result is obtained.

A 2
2 q
Il < (ks = x3)° (12 — k1)° ( 2 +1 )” (2q+1 - 1)7 +1
< 128 F6+D) | o)
2 2 2 2
|25 e, 103)| [0 (u,wa)| |25 ()| [ 820 (i, )|
e(Kk2+k3) ea(K1+ky) e(k2+Ky) ea(k1+K3)

O

Corollary 2.5. Under the conditions of Theorem 2.4, if & = Q is taken, the result is the convexity result in the
co-ordinates as follows.

1 2
U|<(m—@ﬁm—my(ﬂ”+1f(wi4y+l
ol 128 ¥ (p+1) 1),
0*F 9°F °F PF
x( 900F (12, 3)| + ICoE (11, ka)| + 9CoE (12, ka)| + 900¢ (1<1,1<3))

Theorem 2.6. Let F: A CRZ — R be partial differentiable mapping on A = [x1, 1] X [k3, k4], where 11 < Ky and

K3 < Ky, I;Z—ag(q €L, (A),qg > 1and a € R. If|0F| € L, is exponentially convex function on the co-ordinates on A,
then the following inequality holds;

— 2 _ 2 +1 2
N < (kg — x3)" (K2 — K1) y E 2P+l 41 N 4
¥ (p+1)

2
32 9(q+1)
2F 2F 2F
|3(9C35 (12, K3)| 3@35 (Kll K4)‘ aacaé (12, K4)| ‘aacgg (1, K3)|
X pa(Ka+Ks3) palk1+Ks) palrotky) ealx1+x3) 4

where p™t + g7 =
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Proof. Using the Lemma 2.1 and the absolute value property of integrals, we get;

(k4 — Ks)z (k2 — 1<1)2

IA

Il

1
x[
0

Koy +

IIE\ 2 )

°F (1+C 1-¢ 1+¢& 1-& )

3|90\ 2 2 2

2
Lot 2 21 92F /1+¢C 1-C 1+4¢& 1-&
+ C—g E—— ( K1+ Ko, K3 +
0 0

Lot 212 PF (1+C 1-C 1+¢& 1-
+LL C—g 5—5 3C35( > Ko + 7 K1, 5 K3 + 5

0*F (1+C +1—C 1+& +1
dIE\ 2 T T K

1 12 2
o), 5=l

Using the exponentially convex property of |%

(k4 — K3)2 (Kz — 1)

I <

2 2

7, then the following inequality is obtained;

|,98C2_3F§ (K2/ K-3)|

Uf

+(1—C)(1+é) | 525 (1, )| +(1;C)(1 —5) | 528 (1, 7)

2 2 pa(k1+Ky) 2 ealr1+x3)

2

ea(kz +K4)

2

]dCdé

Hé__’( 1+C (1+5)|,9@9 (ic2, 14)| +(1+C)(1;5

| 25 (1, 1c4)

2 palki+ks) 2 2

+(1—C)(1+£) |m(1<2/1<3)‘ +(1—C)(1—5) )fg—gi(m,m)l

2 2 pa(ko+Ks3) 2 2 ealro+ky) ] dCdé

C——Hé——‘[ 1+C (1+5)‘acas (11, 3)| +(1+C)(1—£

|25 (e, w4)|

e(Kka+K3) 2 2

+(1—C)(1+5) |m(1<1,1<3)( +(1—(,)(1—5) ),fg—ai(m,mﬂ

2 2 ea(K1+%3) 2 2 ea(K1+1s) ] dcde

(e85 et (s

|%3F§ (1, K3)‘

2 ealii+ics) 2 2

palko+iky) 2 2

+(1;C)(1J2ré) |85 (2, )| (5959 ’%(Kz’m)'Jdc(ié}

ea(r2+x3)

——CH&——‘{ 1+C (1+5)‘9ca.s (11, )| +(1+C)(1—é

31
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Applying Young’s inequality to the right-hand side yields the following.

(k4 — K3)2 (Kz - K1)

[(ff

I <

1+ C 701+ é |3C95 (KZI K4))
dcdg) ; —[ f f ( : ( e dcde

U L33 [ <1;C>q<1f>q'%f;izz::f”qm
3l 5 () M
! 6—2” e a3 159 05 B
A e T (et
G L (WASSIES
I R T
A R TN e
N e e
L 3T a3 9 0 St
Ll T S50 S
S LB [ O e e
SULLB-AB- w51 [ e e
B e B[ e e
LB B [ (5
([ LB B e o2 [ (5 (5 B e
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The necessary algebraic operations are performed and the following result is obtained by integrating
separately with respect to C and &.

<

(c4 = 13)° (ko = 1) [16 (2141 )’
32 3 (p+1)

2 2 2
12 =1 V(|20 Geaa)| |25 (euwa)| |22 (o) |25 (1, x3)]
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g\ a9 (q + 1)2 ea(Kz+K3) ea(1q+1<4) ea(K2+K4) ea(K1+K3)
PF PF PF PF
1 1 V(EE (eora)| |25 Gea)| |2k (awa)| |25 (1, x3)]
29 (q + 1) ea(K2+K3) ea(1<1+1<4) ea(K2+K4) e[l(K]'I-Kg) :

By making the necessary adjustments, the following result is obtained.

N < (ks — 13)* (12 = x1)° E( 2741 )2+ 4
- 32 Fp+1))  gg+1)7°
P°F PF PF PF
% |f35 (12, K3)| |m (K11K4)‘ |8Cak (2, K4)| ‘acag (1<1,1<3)|
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O

Corollary 2.7. Under the conditions of Theorem 2.6, if & = O is taken, the result is the convexity result in the
co-ordinates as follows.

|]| < (K4 - K3)2 (Kz - K1)2 |:E ( 2p+1 +1 )2 n 4
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PF P*F P’F
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