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Coefficient Bound Estimates for the Certain Subclasses of Analytic and
Bi-Univalent Function Classes Subordinated to the Improved

q-Exponential Function

Nizami MUSTAFAa, Veysel NEZİRa

aKafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Türkiye

Abstract. In this paper, we introduce and examine a certain subclass of analytic and bi-univalent functions
defined on the open unit disk of the complex plane, subordinated to the improved q–exponential function.
We provide coefficient bounds for the initial coefficients of the functions belonging to the defined class, and
solve the Fekete–Szegő problem for the proposed class.

1. Introduction and Preliminaries

Let H(U) denote the class of analytic functions on the open unit disk

U := { z ∈ C : |z| < 1 }

of the complex plane C. LetA be the class of functions f ∈ H(U) of the form

f (z) = z + a2z2 + a3z3 + · · · = z +
∞∑

n=2

anzn, an ∈ C. (1)

Clearly, every f ∈ A satisfies the normalization f (0) = 0 and f ′(0) = 1; functions meeting these conditions
are called normalized in the literature.

We denote by S the well-known subclass of A consisting of univalent functions in U. This class was
first introduced by Köebe [8] and, since then, has become a core object in the geometric function theory.
A milestone was Bieberbach’s 1916 conjecture on the coefficients of functions in S [4], which stimulated
extensive research; see, e.g., [1–3, 5, 9, 10, 20–22].

A function f is called bi - univalent if both f and its inverse f−1 are univalent in U and f (U), respectively;
the class of bi - univalent functions in U will be denoted by Σ. For the inverse

1(w) := f−1(w) = w + A2w2 + A3w3 + A4w4 + · · · = w +
∞∑

n=2

Anwn, w ∈ f (U) = Ur0 ,
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it is well known that

A2 = −a2, A3 = 2a2
2 − a3, A4 = −a3

2 + 5a2a3 − a4, . . . (2)

The bi - starlike and bi - convex subclasses of Σ in the unit disk U are defined analytically by

S∗Σ :=
{

f ∈ Σ : ℜ
(

z f ′(z)
f (z)

)
> 0, z ∈ U and ℜ

(
w1′(w)
1(w)

)
> 0, w ∈ Ur0

}
,

CΣ :=
{

f ∈ Σ : ℜ
(

[z f ′(z)]′

f ′(z)

)
> 0, z ∈ U and ℜ

(
(w1′(w))′

1′(w)

)
> 0, w ∈ Ur0

}
.

Definition 1.1 (Subordination). If f , 1 ∈ H(U), then f is said to be subordinate to 1, written f ≺ 1, if there exists
a Schwarz function ω : U→ U with ω(0) = 0 such that f (z) = 1(ω(z)).

During the past few years, numerous subclasses of S have been introduced and studied as special
choices of the classes C and S∗; see, for example, [12–20, 23].

The functional
H2(a2, a3) := a3 − a2

2

is known as the Fekete–Szegő functional in the literature. More generally, for a complex parameter µ, the
functional

H2(a2, a3;µ) := a3 − µa2
2

is called the generalized Fekete–Szegő functional.
Throughout this section and later on, we use the classical definitions of basic q-analysis. For q ∈ (0, 1)

and n ∈N, the q-number and the q-factorial are defined by

[n]q :=
1 − qn

1 − q
= 1 + q + q2 + · · · + q n−1 =

n−1∑
k=0

qk, [0]q! := 1, [n]q! := [n − 1]q! [n]q.

It is immediate that
lim
q→1−

[n]q = n, lim
q→1−

[n]q! = n!.

In the standard approach to the q-calculus, q-exponential function and improved q-exponential function
are defined as follows (see [6]):

eq(z) =
∞∑

n=0

zn

[n]q!
=

∞∏
n=0

1
[1 − (1 − q)qnz]

, 0 < |q| < 1, |z| <
1
|1 − q|

,

Eq(z) = e1/q(z) =
∞∑

n=0

q
n(n−1)

2 zn

[n]q!
=

∞∏
n=0

[1 + (1 − q)qnz], 0 < |q| < 1, z ∈ C.

It can easily be seen that
lim
q→1−

eq(z) = ez and lim
q→1−

Eq(z) = ez.

Now, let us define new subclasses of bi-univalent functions defined in the open unit disk U.

Definition 1.2. For τ ∈ C \ {0}, β ∈ [0, 1], and q ∈ (0, 1), the function f ∈ Σ is said to be in the class NΣ(τ, β; Eq(z))
if the following conditions are satisfied:

(1 − β)
{

1 +
1
τ

[
z f ′(z)

f (z)
− 1

]}
+ β

{
1 +

1
τ

[
[z f ′(z)]′

f ′(z)
− 1

]}
≺ Eq(z), z ∈ U,

(1 − β)
{

1 +
1
τ

[
w1′(w)
1(w)

− 1
]}
+ β

{
1 +

1
τ

[
[w1′(w)]′

1′(w)
− 1

]}
≺ Eq(w), w ∈ Ur0 .
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In the cases q → 1−, τ = 1, β = 0, and β = 1, from Definition 1.2, we have the following subclasses of
bi-univalent functions.

Definition 1.3. For τ ∈ C \ {0} and β ∈ [0, 1], the function f ∈ Σ is said to be in the class NΣ(τ, β; ez) if the following
conditions are satisfied:

(1 − β)
{

1 +
1
τ

[
z f ′(z)

f (z)
− 1

]}
+ β

{
1 +

1
τ

[
[z f ′(z)]′

f ′(z)
− 1

]}
≺ ez, z ∈ U,

(1 − β)
{

1 +
1
τ

[
w1′(w)
1(w)

− 1
]}
+ β

{
1 +

1
τ

[
[w1′(w)]′

1′(w)
− 1

]}
≺ ew, w ∈ Ur0 .

Definition 1.4. For β ∈ [0, 1] and q ∈ (0, 1), the function f ∈ Σ is said to be in the class NΣ(β,Eq(z)) if the following
conditions are satisfied:

(1 − β)
z f ′(z)

f (z)
+ β

[z f ′(z)]′

f ′(z)
≺ Eq(z), z ∈ U,

(1 − β)
w1′(w)
1(w)

+ β
[w1′(w)]′

1′(w)
≺ Eq(w), w ∈ Ur0 .

Definition 1.5. For τ ∈ C\ {0} and q ∈ (0, 1), the function f ∈ Σ is said to be in the class S∗Σ(τ,Eq(z)) if the following
conditions are satisfied:

1 +
1
τ

[
z f ′(z)

f (z)
− 1

]
≺ Eq(z), z ∈ U, 1 +

1
τ

[
w1′(w)
1(w)

− 1
]
≺ Eq(w), w ∈ Ur0 .

Definition 1.6. For τ ∈ C \ {0}, β ∈ [0, 1], and q ∈ (0, 1), the function f ∈ Σ is said to be in the class CΣ(τ,Eq(z)) if
the following conditions are satisfied:

1 +
1
τ

[
[z f ′(z)]′

f ′(z)
− 1

]
≺ Eq(z), z ∈ U, 1 +

1
τ

[
[w1′(w)]′

1′(w)
− 1

]
≺ Eq(w), w ∈ Ur0 .

Let P be the class of analytic functions defined in U which satisfy the conditions p(0) = 1 andℜ[p(z)] >
0, z ∈ U. It is clear that the functions which satisfy these conditions have the following series expansion:

p(z) = 1 + p1z + p2z2 + · · · = 1 +
∞∑

n=1

pnzn, z ∈ U. (3)

The class P defined above is known as the class of Carathéodory functions in the literature [11].
Now we give some lemmas which we will use in the proof of our main results.

Lemma 1.7 ([7]). Let the function p belong to the class P. Then

|pn| ≤ 2 for each n ∈N, |pn − νpkpn−k| ≤ 2 for n, k ∈N,n > k, ν ∈ [0, 1].

The equalities hold for the function

p(z) =
1 + z
1 − z

, z ∈ U.

Lemma 1.8 ([7]). Let p ∈ P. Then
2p2 = p2

1 + (4 − p2
1)x,

4p3 = p3
1 + 2(4 − p2

1)p1x − (4 − p2
1)p1x2 + 2(4 − p2

1)(1 − |x|2)y,

for some x, y ∈ C with |x| ≤ 1 and |y| ≤ 1.

In this paper, we give some coefficient estimates, and solve the Fekete–Szegö problem for the class
NΣ(τ, β; Eq(z)).
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2. Main Results

In this section, we first state the following theorem concerning the coefficient problem for the class
NΣ(τ, β; Eq(z)).

Theorem 2.1. Let f ∈ NΣ(τ, β; Eq(z)). Then, we have the following estimates

|a2| ≤
|τ|

1 + β
, |a3| ≤ |τ|


1

2(1 + 2β)
, if |τ| ≤

(1 + β)2

2(1 + 2β)
,

|τ|

(1 + β)2 , if |τ| ≥
(1 + β)2

2(1 + 2β)
,

and

|a4| ≤
|τ|

12(1 + 3β)

max{ψ(t0), ψ(2)}, if A(τ, β, q) < 0,

max{ψ(0), ψ(2)}, if A(τ, β, q) ≥ 0,

where

ψ (t0) = A
(
τ, β, q

)
t3
0 + B

(
q
)

t2
0 + C

(
τ, β

)
t0 +D

(
q
)
, t0 =

−B
(
q
)
+
√
∆

3A
(
τ, β, q

) ,
∆ = B2 (

q
)
− 3A

(
τ, β, q

)
C

(
τ, β

)
,A

(
τ, β, q

)
=

(
7 + 4β

)
|τ|2

2
(
1 + β

)3 +
q3

2[3]q
−

15 |τ|
8
(
1 + 2β

) − 1
2
,

B
(
q
)
= −

(
1 +

q
[2]q

)
,C

(
τ, β

)
=

15 |τ|
2
(
1 + 2β

) + 2,D
(
q
)
= 4

(
1 +

q
[2]q

)
,

ψ (0) =
4
(
1 + 2q

)
1 + q

, ψ (2) =
4
(
7 + 4β

)
|τ|(

1 + β
)3 +

4q3

[3]q
−

3q
[2]q

.

Proof. Let f ∈ NΣ(τ, β; Eq(z)). Then, there exist Schwarz functions ω : U→ U and ϖ : Ur0 → Ur0 such that

(1 − β)
{

1 +
1
τ

[
z f ′(z)

f (z)
− 1

]}
+ β

{
1 +

1
τ

[
[z f ′(z)]′

f ′(z)
− 1

]}
= Eq(ω(z)), z ∈ U, (4)

(1 − β)
{

1 +
1
τ

[
w1′(w)
1(w)

− 1
]}
+ β

{
1 +

1
τ

[
(w1′(w))′

1′(w)
− 1

]}
= Eq(ϖ(w)), w ∈ Ur0 . (5)

Using the relation between Schwarz and Carathéodory functions, define p, ϕ ∈ P by:

p(z) =
1 + ω(z)
1 − ω(z)

= 1 + p1z + p2z2 + p3z3 + · · · = 1 +
∞∑

n=1

pnzn, z ∈ U,

ϕ(w) =
1 + ϖ(w)
1 − ϖ(w)

= 1 + ϕ1w + ϕ2w2 + ϕ3w3 + · · · = 1 +
∞∑

n=1

ϕnwn, w ∈ Ur0 . (6)

It follows that

ω(z) =
p(z) − 1
p(z) + 1

=
p1

2
z +

1
2

p2 −
p2

1

2

 z2 +
1
2

p3 − p1p2 −
p3

1

4

 z3 + · · · , z ∈ U,

ϖ(w) =
ϕ(w) − 1
ϕ(w) + 1

=
ϕ1

2
w +

1
2

ϕ2 −
ϕ2

1

2

 w2 +
1
2

ϕ3 − ϕ1ϕ2 −
ϕ3

1

4

 w3 + · · · , w ∈ Ur0 . (7)
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From (5) and (7), we obtain

(1 + β)a2z +
[
2(1 + 2β)a3 − (1 + 3β)a2

2

]
z2 +

[
3(1 + 3β)a4 − 3(1 + 5β)a2a3 + (1 + 7β)a3

2

]
z3 + · · ·

=
τp1

2
z +

τ
4

[
2p2 −

(
1 −

q
[2]q!

)
p2

1

]
z2 +

τ
8

[
4p3 − 4p1p2 +

2q
[2]q!

(2p2 − p2
1) −

(
1 −

q3

[3]q!

)
p3

1

]
z3 + · · · , z ∈ U,

(1 + β)A2w +
[
2(1 + 2β)A3 − (1 + 3β)A2

2

]
w2 +

[
3(1 + 3β)A4 − 3(1 + 5β)A2A3 + (1 + 7β)A3

2

]
w3 + · · ·

=
τϕ1

2
w +

τ
4

[
2ϕ2 −

(
1 −

q
[2]q!

)
ϕ2

1

]
w2 +

τ
8

[
4ϕ3 − 4ϕ1ϕ2 +

2q
[2]q!

(2ϕ2 − ϕ
2
1) −

(
1 −

q3

[3]q!

)
ϕ3

1

]
w3 + · · · , w ∈ Ur0 .

(8)

Equating coefficients in (8) yields

a2 =
τp1

2(1 + β)
, 2(1 + 2β)a3 − (1 + 3β)a2

2 =
τ
4

[
2p2 −

(
1 −

1
[2]q!

)
p2

1

]
,

3(1 + 3β)a4 − 3(1 + 5β)a2a3 + (1 + 7β)a3
2 =

τ
8

[
4p3 − 4p1p2 +

2q
[2]q!

(2p2 − p2
1) −

(
1 −

q3

[3]q!

)
p3

1

]
, (9)

and similarly

a2 = −
τϕ1

2(1 + β)
, 2(1 + 2β)A3 − (1 + 3β)A2

2 =
τ
4

[
2ϕ2 −

(
1 −

1
[2]q!

)
ϕ2

1

]
,

3(1 + 3β)A4 − 3(1 + 5β)A2A3 + (1 + 7β)A3
2 =

τ
8

[
4ϕ3 − 4ϕ1ϕ2 +

2q
[2]q!

(2ϕ2 − ϕ
2
1) −

(
1 −

q3

[3]q!

)
ϕ3

1

]
. (10)

From a2 =
τp1

2(1 + β)
= −

τϕ1

2(1 + β)
we get p1 = −ϕ1. Applying Lemma 1.8 to this identity gives the first

assertion of the theorem. Using A2 = −a2, A3 = 2a2
2 − a3, A4 = −a3

2 + 5a2a3 − a4 see [3], the second and third
identities in (10) become

−2(1 + 2β)a3 + (3 + 5β)a2
2 =

τ
4

[
2ϕ2 −

(
1 −

1
[2]q!

)
ϕ2

1

]
,

−3(1 + 3β)a4 + 6(2 + 5β)a2a3 + 2(1 + 7β)a3
2 =

τ
8

[
4ϕ3 − 4ϕ1ϕ2 +

2q
[2]q!

(2ϕ2 − ϕ
2
1) −

(
1 −

q3

[3]q!

)
ϕ3

1

]
. (11)

Subtracting the first of (11) from the second identity in (9) gives

4(1 + 2β)
(
a3 − a2

2

)
=
τ
2

(p2 − ϕ2).

By Lemma 1.8, we obtain

a3 = a2
2 +

(4 − p2
1) τ

16(1 + 2β)
(x − y), (12)

for some x, y ∈ Cwith |x| ≤ 1 and |y| ≤ 1. Using a2 =
τp1

2(1 + β)
from (9), (12) can be written as:

a3 =
τ2p 2

1

4(1 + β)2 +
(4 − p2

1) τ

16(1 + 2β)
(x − y), for some x, y ∈ Cwith |x| ≤ 1, |y| ≤ 1.



N. Mustafa, V. Nezir / TJOS 10 (3), 127–137 132

Hence, by the triangle inequality,

|a3| ≤
|τ|2

4(1 + β)2 t2 +
(4 − t2)|τ|
16(1 + 2β)

(ξ + ζ), ξ, ζ ∈ [0, 1], t = |p1|. (13)

From (13), we get

|a3| ≤ a(τ, β) t2 +
|τ|

2(1 + 2β)
, t ∈ [0, 2], (14)

where

a(τ, β) =
|τ|2

4(1 + β)2 −
|τ|

8(1 + 2β)
.

Maximizing

φ(t) = a(τ, β) t2 +
|τ|

2(1 + 2β)
, t ∈ [0, 2],

we easily obtain

φ(t) ≤
|τ|

2(1 + 2β)
if a(τ, β) ≤ 0, φ(t) ≤

|τ|2

(1 + β)2 if a(τ, β) ≥ 0.

Taking these into account in (13) yields the second assertion of the theorem.

Estimate for |a4|. Subtracting the second identity in (11) from the third identity in (9), we obtain

6(1 + 3β)a4 − 15(1 + β)a2a3 − (1 + 7β)a3
2 =

τ
4

{
2(p3 − ϕ3) − 2p1(p2 + ϕ2) +

2q
[2]q

(p2 − ϕ2) −
(
1 −

q3

[3]q

)
p3

1

}
.

Using the expressions already found for a2 and a3, we arrive at

a4 =
τ

12(1 + 3β)

{[ 15τ
8(1 + 2β)

p1 +
q

[2]q

]
(p2 − ϕ2) − p1(p2 + ϕ2) + (p3 − ϕ3) +

[ (7 + 4β)τ2

2(1 + β)3 +
1
2

(
1 −

q3

[3]q

)]
p3

1

}
.

Since (Lemma 1.8)

p2 − ϕ2 =
4 − p2

1

2
(x − y), p2 + ϕ2 = p2

1 +
4 − p2

1

2
(x + y),

p3 − ϕ3 =
1
2

p3
1 + (4 − p2

1)p1(x + y) −
(4 − p2

1)p1

2
(x2 + y2) + (4 − p2

1)
[
(1 − |x|2)z − (1 − |y|2)w

] ,
we obtain

a4 =
τ

12(1 + 3β)

{[ 15τ
8(1 + 2β)

p1 +
q

[2]q

]4 − p2
1

2
(x − y) − p1

p2
1 +

4 − p2
1

2
(x + y)


+

1
2

p3
1 + (4 − p2

1)p1(x + y) −
(4 − p2

1)p1

2
(x2 + y2) + (4 − p2

1)
[
(1 − |x|2)z − (1 − |y|2)w

]
+

[ (7 + 4β)τ2

2(1 + β)3 +
1
2

(
1 −

q3

[3]q

)]
p3

1

}
,

for some x, y, z,w ∈ Cwith |x|, |y|, |z|, |w| ≤ 1. Hence, by the triangle inequality,

|a4| ≤
|τ|

12(1 + 3β)

{[ 15|τ|
8(1 + 2β)

t +
q

[2]q

]4 − t2

2
(ξ + η) +

(4 − t2)t
4

(ξ2 + η2) + 4 − t2 +
[ (7 + 4β)|τ|2

2(1 + β)3 +
q3

2[3]q

]
t3

}
,
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where t = |p1|, ξ = |x|, η = |y|. Maximizing in ξ, η gives

|a4| ≤
|τ|

12(1 + 3β)

{[ (7 + 4β)|τ|2

2(1 + β)3 +
q3

2[3]q
−

15|τ|
8(1 + 2β)

−
1
2

]
t3
−

(
1 +

q
[2]q

)
t2 +

[ 15|τ|
2(1 + 2β)

+ 2
]
t +

4q
[2]q
+ 4

}
,

t ∈ [0, 2]. Let ψ : R→ R be defined by:

ψ(t) = A(τ, β, q)t3 + B(q)t2 + C(τ, β)t +D(q), t ∈ [0, 2],

where

A(τ, β, q) =
(7 + 4β)|τ|2

2(1 + β)3 +
q3

2[3]q
−

15|τ|
8(1 + 2β)

−
1
2
, B(q) = −

(
1 +

q
[2]q

)
,

C(τ, β) =
15|τ|

2(1 + 2β)
+ 2, D(q) = 4

(
1 +

q
[2]q

)
.

Maximizing ψ on [0, 2] gives

ψ(t) ≤

max{ψ(t0), ψ(2)}, A(τ, β, q) < 0,

max{ψ(0), ψ(2)}, A(τ, β, q) ≥ 0,

where

t0 =
−B(q) +

√
∆

3A(τ, β, q)
, ∆ = B(q)2

− 3A(τ, β, q)C(τ, β),

and

ψ(0) =
4(1 + 2q)

1 + q
, ψ(2) =

4(7 + 4β)|τ|
(1 + β)3 +

4q3

[3]q
−

3q
[2]q

.

Therefore,

|a4| ≤
|τ|

12(1 + 3β)

max{ψ(t0), ψ(2)}, A(τ, β, q) < 0,

max{ψ(0), ψ(2)}, A(τ, β, q) ≥ 0.

This completes the proof.

In the cases q→ 1−, τ = 1, β = 0 and β = 1, the following corollaries follow from Theorem 2.1.

Corollary 2.2. If f ∈ NΣ(τ, β; ez), then

|a2| ≤
|τ|

1 + β
, |a3| ≤ |τ|


1

2(1 + 2β)
, if |τ| ≤

(1 + β)2

2(1 + 2β)
,

|τ|

(1 + β)2 , if |τ| ≥
(1 + β)2

2(1 + 2β)
.

Moreover,

|a4| ≤
|τ|

12(1 + 3β)

max{ψ(t0), ψ(2)}, if A(τ, β, q) < 0,

max{ψ(0), ψ(2)}, if A(τ, β, q) ≥ 0,

where

ψ(t0) = 1
2

{
2A(τ, β) t3

0 − 3t2
0 + 2C(τ, β) t0 + 12

}
, t0 =

3 +
√
∆0(τ, β)

6A(τ, β)
,

∆0(τ, β) = 3
[

3 − 4A(τ, β)C(τ, β)
]
, A(τ, β) =

(7 + 4β)|τ|2

2(1 + β)3 −
15|τ|

8(1 + 2β)
−

1
3
,

B = −
3
2
, C(τ, β) =

15|τ|
2(1 + 2β)

+ 2, D = 6, ψ(0) = 6, ψ(2) =
4(7 + 4β)|τ|

(1 + β)3 −
1
6
.
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Corollary 2.3. If f ∈ NΣ
(
β,Eq(z)

)
, then

|a2| ≤
1

1 + β
, |a3| ≤

1
(1 + β)2 ,

and

|a4| ≤
1

12(1 + 3β)

max{ψ(t0), ψ(2)}, if A(β, q) < 0,

max{ψ(0), ψ(2)}, if A(β, q) ≥ 0,

where

ψ(t0) = A(β, q) t3
0 + B(q) t2

0 + C(β) t0 +D(q), t0 =
−B(q) +

√
∆1(β, q)

3A(β, q)
,

∆1(β, q) = B(q)2
− 3A(β, q)C(β), A(β, q) =

7 + 4β
2(1 + β)3 +

q3

2[3]q
−

15
8(1 + 2β)

−
1
2
,

B(q) = −
(
1 +

q
[2]q

)
, C(β) =

8β + 19
2(1 + 2β)

, D(q) = 4
(
1 +

q
[2]q

)
,

ψ(0) =
4(1 + 2q)

1 + q
, ψ(2) =

4(7 + 4β)
(1 + β)3 +

4q3

[3]q
−

3q
[2]q

.

Corollary 2.4. If f ∈ S∗Σ
(
τ,Eq(z)

)
, then

|a2| ≤ |τ|, |a3| ≤
|τ|
2

1, if |τ| ≤ 1
2 ,

2|τ|, if |τ| ≥ 1
2 ,

and

|a4| ≤
|τ|
12

max{ψ(t0), ψ(2)}, if A0(τ, q) < 0,

max{ψ(0), ψ(2)}, if A0(τ, q) ≥ 0,

where

ψ(t0) = A0(τ, q) t3
0 + B(q) t2

0 + C0(τ) t0 +D(q), t0 =
−B(q) +

√
∆2(τ, q)

3A0(τ, q)
,

∆2(τ, q) = B(q)2
− 3A0(τ, q)C0(τ), A0(τ, q) =

7|τ|2 − 1
2

+
q3

2[3]q
−

15|τ|
8
,

B(q) = −
(
1 +

q
[2]q

)
, C0(τ) =

15|τ|
2
+ 2, D(q) = 4

(
1 +

q
[2]q

)
,

ψ(0) =
4(1 + 2q)

1 + q
, ψ(2) =

4q3

[3]q
−

3q
[2]q
+ 28|τ|.

Corollary 2.5. If f ∈ CΣ
(
τ,Eq(z)

)
, then

|a2| ≤
|τ|
2
, |a3| ≤ |τ|


1
6
, if |τ| ≤

2
3
,

|τ|
4
, if |τ| ≥

2
3
,

and

|a4| ≤
|τ|
48

max{ψ(t0), ψ(2)}, if A1(τ, q) < 0,

max{ψ(0), ψ(2)}, if A1(τ, q) ≥ 0,
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where

ψ(t0) = A1(τ, q) t3
0 + B(q) t2

0 + C1(τ) t0 +D(q), t0 =
−B(q) +

√
∆3(τ, q)

3A1(τ, q)
,

∆3(τ, q) = B(q)2
− 3A1(τ, q)C1(τ), A1(τ, q) =

11|τ|2 − 10|τ|
16

+
q3
− [3]q

2[3]q
,

B(q) = −
(
1 +

q
[2]q

)
, C1(τ) =

5|τ|
2
+ 2, D(q) = 4

(
1 +

q
[2]q

)
,

ψ(0) =
4(1 + 2q)

1 + q
, ψ(2) =

11|τ|
2
+

4q3

[3]q
−

3q
[2]q

.

Now, we give the following theorem on the Fekete-Szegö problem for the class NΣ
(
τ, β; Eq (z)

)
.

Theorem 2.6. Let f ∈ NΣ(τ, β; Eq(z)) and µ ∈ C. Then

∣∣∣a3 − µa2
2

∣∣∣ ≤ |τ|
2


1

1 + 2β
, if 2|1 − µ| |τ| ≤

(1 + β)2

1 + 2β
,

2|1 − µ| |τ|
(1 + β)2 , if 2|1 − µ| |τ| ≥

(1 + β)2

1 + 2β
.

Proof. From the proof of Theorem 2.1 we have, for some x, y ∈ Cwith |x| ≤ 1, |y| ≤ 1,

a3 − µa2
2 = (1 − µ)

τ2p 2
1

4(1 + β)2 +
(4 − p2

1)τ

16(1 + 2β)
(x − y).

Hence ∣∣∣a3 − µa2
2

∣∣∣ ≤ |1 − µ| |τ|2
4(1 + β)2 t2 +

(4 − t2)|τ|
16(1 + 2β)

(ξ + η), ξ, η ∈ [0, 1], t = |p1|. (15)

Maximizing the right–hand side of (15) over ξ, η yields∣∣∣a3 − µa2
2

∣∣∣ ≤ |τ|
8

[
θ(τ, β, µ) t2 +

4
1 + 2β

]
, t ∈ [0, 2], (16)

where

θ(τ, β, µ) =
2|1 − µ| |τ|

(1 + β)2 −
1

1 + 2β
.

Maximizing the function χ : [0, 2]→ R defined as follows

χ (t) = θ
(
τ, β, µ

)
t2 +

4
1 + 2β

, t ∈ [0, 2] ,

we can easily see that χ (t) ≤ 4
1+2β if θ

(
τ, β, µ

)
≤ 0 and

χ (t) ≤
8
∣∣∣1 − µ∣∣∣ |τ|(
1 + β

)2

if θ
(
τ, β, µ

)
≥ 0.

By taking these estimates obtained for the function χ into account in the inequality (16), we complete
the proof of the theorem.

In the cases q→ 1−, τ = 1, β = 0 and β = 1, the following corollaries follow from Theorem 2.6.
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Corollary 2.7. If f ∈ NΣ(τ, β; ez), then

∣∣∣a3 − µa2
2

∣∣∣ ≤ |τ|
2


1

1 + 2β
, if 2|1 − µ| |τ| ≤

(1 + β)2

1 + 2β
,

2|1 − µ| |τ|
(1 + β)2 , if 2|1 − µ| |τ| ≥

(1 + β)2

1 + 2β
.

Corollary 2.8. If f ∈ NΣ(β,Eq(z)), then

∣∣∣a3 − µa2
2

∣∣∣ ≤ 1
2


1

1 + 2β
, if 2|1 − µ| ≤

(1 + β)2

1 + 2β
,

2|1 − µ|
(1 + β)2 , if 2|1 − µ| ≥

(1 + β)2

1 + 2β
.

Corollary 2.9. If f ∈ S∗Σ(τ,Eq(z)), then

∣∣∣a3 − µa2
2

∣∣∣ ≤ |τ|
2

1, if 2|1 − µ| |τ| ≤ 1,

2|1 − µ| |τ|, if 2|1 − µ| |τ| ≥ 1.

Corollary 2.10. If f ∈ CΣ(τ,Eq(z)), then

∣∣∣a3 − µa2
2

∣∣∣ ≤ |τ|
2


1
3
, if 3|1 − µ| |τ| ≤ 2,

|1 − µ| |τ|
2

, if 3|1 − µ| |τ| ≥ 2.

Also, taking µ = 0 and µ = 1 in the Theorem 2.2, we obtain the following results, respectively.

Corollary 2.11. If f ∈ NΣ(τ, β; Eq(z)), then

|a3| ≤
|τ|
2


1

1 + 2β
, if 2|τ| ≤

(1 + β)2

1 + 2β
,

2|τ|
(1 + β)2 , if 2|τ| ≥

(1 + β)2

1 + 2β
.

Corollary 2.12. If f ∈ NΣ(τ, β; Eq(z)), then

|a3 − a2
2| ≤

|τ|
2(1 + 2β)

.

Remark 2.13. Corollary 2.11 confirms the second assertion of Theorem 2.1.

In addition, taking µ = 1, β = 0 and β = 1 in the Theorem 2.6, we obtain the following results, respectively.

Corollary 2.14. If f ∈ S∗Σ(τ,Eq(z)), then

|a3 − a2
2| ≤
|τ|
2
.

Corollary 2.15. If f ∈ CΣ(τ,Eq(z)), then

|a3 − a2
2| ≤
|τ|
6
.
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3. Conclusion

We introduced the class NΣ(τ, β; Eq(z)) of bi-univalent functions subordinated to the improved q–exponen-
tial function and derived coefficient bounds for the initial coefficients. In particular, using the Carathéodory
representation (3) and subordination techniques, we obtained estimates for |a2| and |a3|, an explicit piece-
wise upper bound for |a4| (see Theorem 2.1), and solved the Fekete–Szegő problem for NΣ(τ, β; Eq(z))
(Theorem 2.6). Special cases arising from q → 1−, τ = 1, β = 0, and β = 1 yield corollaries that recover
known results for bi-starlike and bi-convex subclasses and confirm the consistency of our estimates.
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