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Abstract. Although ultrasonography plays a critical role in the early detection of breast cancer, its limita-
tions, such as operator dependency, necessitate the development of objective analysis methods. In response
to this need, deep learning models based on the Vision Transformer (ViT) architecture present promising
solutions. This investigation comparatively assesses the performance of four modern Transformer architec-
tures Swin-Base, ViT-Base, DeiT-Base, and BEiT-Base for the classification of breast ultrasound images into
benign, malignant, and normal categories. Conducted on the publicly available “Breast Ultrasound Images
Dataset,” the study integrated dynamic data augmentation techniques to enhance model generalization.
The empirical results demonstrated a statistically significant superiority of the DeiT-Base model, which
achieved 94.30% accuracy and a 93.85% Fl-score. While ViT-Base and Swin-Base delivered competitive
outcomes, BEiT-Base exhibited the lowest performance with 66.46% accuracy. These findings indicate that
for the analysis of limited and distinct datasets such as breast ultrasound, data-efficient training strategies
like the knowledge distillation employed by DeiT may be more impactful than architectural differences
alone. Moreover, these approaches hold considerable potential for future integration into clinical decision
support systems.

1. Introduction

Breast cancer, a malignant tumor characterized by the uncontrolled proliferation of epithelial cells
within the breast tissue, represents a significant global public health issue. Its pathogenesis is attributed
to an intricate interplay of genetic, hormonal, lifestyle, and environmental factors [1-3]. Within the man-
agement of this disease, early diagnosis is the paramount factor directly influencing treatment success
and patient survival; consequently, non-invasive diagnostic assessments emerge as a cornerstone strategy
[4-6]. Mammography, recognized as the gold standard for population-based screening programs [7, 8],
possesses a notable limitation: its diagnostic sensitivity is diminished, particularly in breast structures with
dense fibroglandular tissue and in younger women. This circumstance gives rise to a scientific and clinical
imperative for complementary imaging modalities capable of addressing these diagnostic voids [9].

In response to this requirement, ultrasonography stands as a pivotal complementary method due to
advantages such as the absence of ionizing radiation, low cost, and the provision for dynamic evaluation
[10]. It is an invaluable tool for clarifying mammographic findings, differentiating between cystic and solid
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masses, and guiding interventional procedures like biopsies. It significantly enhances diagnostic perfor-
mance in dense breast tissue by rendering lesions more conspicuous [11]. Nevertheless, the effectiveness
of ultrasonography exhibits a high degree of dependence on operator experience and interpretation, a
situation that can lead to diagnostic inconsistencies among different specialists. This limitation, combined
with its inadequacy in detecting microcalcifications, underscores the necessity for objective, reproducible
analysis methods to enhance standardization and mitigate subjectivity in the interpretation of ultrasound
images [12, 13].

In recent years, Vision Transformer (ViT) architectures are spearheading revolutionary advancements in
the field of medical image analysis. Owing to their capacity to effectively learn global context and long-range
dependencies from large volumes of image data, these models have emerged as a promising alternative
to conventional Convolutional Neural Networks (CNNs), particularly in disciplines such as radiology and
pathology. Specific to breast cancer, ViT-based approaches demonstrate high accuracy rates in the detection,
classification, and segmentation of suspicious lesions from mammograms, histopathological sections, and
ultrasound images.

The integration of artificial intelligence with established medical imaging techniques has pioneered
the development of advanced early detection systems for a variety of health conditions [14-17]. The
application of these systems spans a wide spectrum, from the diagnosis of retinal diseases [18, 19] to the
detection of oncological pathologies such as breast [20-27], cervical [28-31], and brain cancers [32-35].
Drawing inspiration from these successful applications, the present study undertakes a comprehensive
comparison of four prominent Transformer architectures (Swin-Base, ViT-Base, DeiT-Base, and BEiT-Base)
for the classification of breast ultrasound images. This analysis is focused on a detailed evaluation of the
performance, diagnostic accuracy, and efficacy of the aforementioned models.

1.1. Related Works

The integration of artificial intelligence, particularly deep learning, has initiated a transformative era in
breast cancer diagnostics, representing a significant leap forward in computational pathology. As noted by
Katayama et al. [36], these technologies are increasingly automating crucial tasks for pathologists, such as
tumor identification and classification, thereby enhancing the efficiency and throughput of pathology ser-
vices. While Convolutional Neural Networks (CNNs) have historically been the foundational architecture
in this domain, a paradigm shift is underway towards Vision Transformers (ViTs). The growing interest in
ViTs stems from their architectural superiority in capturing long-range dependencies and global contextual
information within whole-slide images (WSIs), a limitation of the localized receptive fields inherent in
CNNs. This sentiment is echoed by multiple researchers, including Abimouloud et al. [37] and Balaha et al.
[38], who highlight the potential of ViT-based systems to offer a more holistic image analysis, thus serving
as powerful assistive tools that augment the diagnostic capabilities of medical professionals in modern
breast cancer management.

The empirical evidence supporting the efficacy of ViT-based architectures is compelling and continues
to grow. In a direct comparative study, Jahan et al. [39] demonstrated that a ViT-based model surpassed
established CNNs like DenseNet-201 and MobileNetV2, achieving a superior accuracy of 96.74% for can-
cerous patch detection and 89.78% for subtype classification in WSIs. This highlights the model’s robust
feature extraction capabilities. The versatility of these architectures is further demonstrated by Boudouh
and Bouakkaz, [40] who engineered a novel hybrid model combining a ViT++ branch with a VGG16 CNN
branch. Their approach yielded an exceptional accuracy of 99.22% for the classification of breast calci-
fications in mammograms, showcasing the synergistic potential of fusing transformer and convolutional
features. Further reinforcing these findings, Balaha et al. [38] developed a CAD framework utilizing
ViTs that achieved state-of-the-art performance exceeding 97% accuracy. Notably, their work also inte-
grated interpretability methods like SHAP, addressing the ”black box” issue and enhancing the clinical
trustworthiness of the model’s predictions.

Despite their impressive performance, the practical deployment of standard ViT models is often hin-
dered by significant challenges, including a substantial data dependency, high parametric complexity, and
intensive computational resource requirements for training. Abimouloud et al. [37, 41] extensively discuss
these limitations, which are particularly pronounced in medical imaging where datasets can be limited and
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complex. In response, a prominent research trend has been the development of lightweight and hybrid
ViT-CNN architectures designed to mitigate these issues. In one study, Abimouloud et al. proposed and
validated several low-weight systems (ViT, CCT, MVIT), which achieved high accuracy (up to 98.64%) while
minimizing computational overhead. In a subsequent investigation, the same research group introduced
the TokenMixer, a sophisticated hybrid architecture inspired by ConvMixer and TokenLearner models.
This model optimizes the feature extraction pipeline by strategically tokenizing input patches, resulting
in reduced training times and fewer parameters while attaining a remarkable 97.02% accuracy in binary
classification. Such innovations are critical for advancing the clinical viability of ViT-based systems, making
them more efficient, accessible, and practical for real-world diagnostic applications.

2. Methods and Methodology

2.1. Dataset

The empirical basis of this study is the “Breast Ultrasound Images Dataset,” made publicly available
by sabahesaraki via the Kaggle platform [42]. Comprising a total of 780 ultrasound (US) images of patho-
logically confirmed benign, malignant, and normal breast tissue, this dataset provides a robust foundation
for evaluating the capability of the developed models to discriminate between distinct tissue patterns.
To ensure standardized and reproducible model development processes and to reliably assess general-
ization capability while minimizing the risk of overfitting, the dataset was partitioned using a stratified
methodology. Accordingly, the data was allocated into training (70%, n=545), validation (10%, n=70), and
independent test sets (20%, n=158), with the latter reserved for the final performance evaluation of the
models. This stratification ensured that the class distribution within each subset mirrored the proportions
of the original dataset, resulting in a training set comprising 305 benign, 147 malignant, and 93 normal
images; a validation set with 43 benign, 21 malignant, and 13 normal images; and a test set containing 89
benign, 42 malignant, and 27 normal images. The specifics of this data partitioning are detailed in Table 1.

Table 1: Detailed categorical distribution of the “Breast Ultrasound Images Dataset” across training, vali-
dation, and testing subsets using a 70%-10%—-20% stratified split ratio.

Classes Train | Validation | Test | Total
Bening 305 43 89 437
Malignant | 147 21 42 210
Normal 93 13 27 133
Total 545 77 158 780

To visually elucidate the inter-class morphological differences and imaging characteristics within the
dataset, representative ultrasound examples from each category (benign, malignant, and normal) are pre-
sented in Figure 1. These images illustrate the structural dichotomy between the regular margins and
homogeneous internal structure typically associated with benign lesions, and the irregular borders, spicu-
lated extensions, and heterogeneous internal echoes characteristic of malignant lesions. Concurrently, the
typical fibroglandular and adipose tissue patterns of normal breast parenchyma are also discernible. The
presented exemplars not only highlight the discriminative pathological characteristics but also embody
the technical challenges inherent to ultrasound imaging that the models must overcome, such as speckle
noise and low contrast. Consequently, this visual presentation illuminates the fundamental features that
the models are required to learn, while concurrently providing a comprehensive insight into the diversity
and complexity inherent within the dataset.
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Figure 1: Representative ultrasonography samples showcasing the distinctive morphological features of
Normal, Benign (regular margins), and Malignant (irregular/spiculated borders) breast tissue patterns.

2.2. Data Augmentation

In this study, to mitigate the risk of overfitting a prevalent challenge with limited medical datasets
and to enhance generalization performance, a dynamic data augmentation strategy was incorporated into
the training pipeline [43, 44]. Given the nature of the classification task, mask files (mask.png), initially
provided for segmentation purposes, were excluded from the scope of the analysis. During training, a series
of random transformations were applied to each image on-the-fly. Initially, each image was randomly
cropped to a scale of 8% to 100% of its original area (scale: [0.08, 1.0]) with an aspect ratio maintained
between 0.75 and 1.33 (ratio: [0.75, 1.33]). Subsequently, it was resized to a standard resolution of 224x224
pixels (img-size: 224) using a randomly selected interpolation method (train-interpolation: random). These
geometric augmentations were supplemented by horizontal flipping, applied with a 50% probability (hflip:
0.5), whereas vertical flipping was not employed (vflip: 0.0). The photometric augmentations involved
random adjustments to brightness, contrast, saturation, and hue, with a jitter factor of 0.4 (color-jitter: 0.4).
This dynamic and multi-faceted augmentation strategy exposes the model to a different variation of the
data during each training epoch, thereby inhibiting memorization and reinforcing the model’s capacity for
robust and reliable inference on previously unseen data.

2.3. Model Architecture

A recent paradigm shift in computer vision has been catalyzed by the adaptation of the revolutionary
Transformer architecture, originally conceived for natural language processing. The pioneering model
in this transition, the Vision Transformer (ViT) [45], re-envisioned image analysis by deconstructing an
image into a sequence of flattened patches, treating them as tokens. This approach eschews the inductive
biases of convolutional layers, instead leveraging a global self-attention mechanism to capture long-range
dependencies across the entire image. While this enables a powerful holistic understanding, particularly
when trained on massive datasets, the global attention mechanism incurs a significant computational burden
and struggles with data efficiency. Addressing this latter issue, the Data-efficient Image Transformer (DeiT)
[46] was introduced, employing a knowledge distillation strategy where a ”“student” model learns from a
pre-trained “teacher” network. This method allows DeiT to achieve or even surpass ViT’s performance
without the need for vast training corpora. The DeiT architecture, shown in Figure 2, improves data
efficiency by incorporating a 'distillation token” alongside the standard class token and implementing a
teacher-student learning strategy.
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Figure 2: Detailed schematic of the Data-efficient Image Transformer (DeiT) architecture, highlighting the
integration of the distillation token and the teacher-student knowledge transfer mechanism.

To tackle ViT’s inherent scalability and computational challenges, the Swin Transformer [47] proposed a
more pragmatic, hierarchical architecture. It introduces locality by confining the self-attention mechanism
to non-overlapping windows, drastically reducing computational cost. To restore a global receptive field,
a subsequent window shifting mechanism facilitates cross-window connections in deeper layers, creating
a hierarchical feature representation analogous to that of CNNs. This design has proven superior for
complex downstream tasks like object detection and semantic segmentation. Concurrently, a different
approach to pre-training was inspired by the success of BERT in NLP, leading to BEiT (Bidirectional Encoder
representations from Image Transformers) [48]. BEiT is pre-trained using a self-supervised task known as
masked image modeling, where it learns to reconstruct original image patches from a corrupted version
with masked regions. This process compels the model to learn robust, high-level semantic representations
of image structure before it is fine-tuned for a specific task. Collectively, these pioneering architectures
represent a significant evolution beyond traditional convolutional approaches, charting a new course for
state-of-the-art image analysis.
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3. Results and Discussion

In this study, the performance of four distinct Vision Transformer-based models (Swin-Base, ViT-Base,
DeiT-Base, and BEiT-Base) was comparatively analyzed for the classification of breast ultrasound images,
considering various metrics and computational costs. The obtained results are summarized in Table 2.
Following the evaluations, the DeiT-Base model was observed to exhibit a distinct superiority over all other
models, achieving the highest performance. DeiT-Base attained impressive values, including an accuracy
of 94.30%, a precision of 94.05%, a recall of 93.65%, and an Fl-score of 93.85%. In contrast, the ViT-Base
and Swin-Base models yielded competitive yet inferior results, with accuracy rates of 89.87% and 88.61%,
respectively. The BEiT-Base model, with an accuracy of 66.46%, exhibited a performance substantially
below expectations.

Table 2: Comprehensive performance evaluation and computational complexity analysis of Swin-Base,
ViT-Base, DeiT-Base, and BEiT-Base models based on diagnostic metrics and GFLOPs.

Models Accuracy | Precision | Recall | Fl-score | Params | GFLOPs
Swin-Base 88.61 88.38 87.72 87.97 86.75 30.3375
ViT-Base 89.87 89.56 88.05 88.77 85.80 33.7257
Deit-Base 94.30 94.05 93.65 93.85 85.80 33.7257
Beit-Base 66.46 47.97 47.71 4543 85.76 25.3294

Upon examining the performance disparities among the models, the success of DeiT-Base is attributed
to its knowledge distillation strategy, which trains the ViT architecture in a data-efficient manner. This
“teacher-student” approach enables the model to learn richer and more generalizable features from a
limited dataset, offering a significant advantage over standard training methods, particularly in data-scarce
domains like medical imaging. While the performances of ViT-Base and Swin-Base were quite close, a
notable trade-off between computational cost and performance was observed. Vil-Base offered slightly
higher accuracy (1%), whereas the Swin-Base, owing to its hierarchical and windowed attention mechanism,
was found to operate with a lower computational load (30.34 GFLOPs vs. 33.73 GFLOPs). This indicates
that the Swin architecture could be a more pragmatic option in resource-constrained settings. The confusion
matrices derived from the architectures of the employed models are presented in Figure 3.
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Figure 3: Visualization of multi-class classification performance via confusion matrices for the four evalu-
ated Transformer architectures on the independent test dataset.

One of the most striking findings was the suboptimal performance exhibited by the BEiT-Base model.
The model’s remarkably low Fl-score of 45.43% suggests an ineffective transfer of the features learned
through self-supervised pre-training to this specific medical image classification task. The hypothesis can
be advanced that although BEiT learns powerful semantic representations via “masked image modeling”
on natural images, these representations failed to adapt to the unique characteristics of ultrasound images,
such as their distinct texture patterns, speckle noise, and low contrast. Despite being the most efficient
model with the lowest GFLOPs, this weak performance underscores that computational efficiency alone is
insufficient for achieving high diagnostic accuracy.

This investigation demonstrates that for the classification of breast ultrasound images, the training
strategy plays a role as critical as the model architecture. The superior success achieved by DeiT-Base
through its knowledge distillation method highlights the potential of such data-efficient training approaches
for future medical image analysis studies. Future investigations could explore whether the performance
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of self-supervised models like BEiT can be enhanced through pre-training on large, in-domain medical
datasets.

4. Conclusions

This study aimed to comprehensively analyze the performance of four distinct Vision Transformer-based
architectures (Swin-Base, ViT-Base, DeiT-Base, and BEiT-Base) for the automatic classification of breast ul-
trasound images. The findings unequivocally demonstrate that the DeiT-Base model, with an accuracy of
94.30%, significantly outperformed all other tested approaches. It is reasonable to attribute this superiority
to the effectiveness of the knowledge distillation strategy employed by DeiT in learning more robust and
generalizable features, particularly when working with limited medical datasets. Although the ViT-Base
and Swin-Base models exhibited acceptable performance, they fell short of DeiT’s success. Conversely, the
weak performance of the BEiT-Base model illuminates the challenges of directly transferring representa-
tions learned via self-supervision on general-purpose natural images to medical imaging modalities, like
ultrasound, which possess unique noise and texture characteristics. This situation serves as an indicator
of how critical training strategies, tailored to the nature of the data, are, in addition to the choice of model
architecture.

The execution of this study on a single public dataset should be acknowledged as a limitation, and
the findings warrant validation with more extensive datasets collected from diverse clinical environments.
Several key directions are proposed for future research. First, pre-training models such as BEiT using large,
in-domain medical image archives instead of natural images holds substantial potential for significantly
enhancing their performance. Second, inspired by the success of DeiT, integrating knowledge distillation
techniques into more computationally efficient architectures like the Swin Transformer may yield an optimal
balance between accuracy and efficiency. Ultimately, the integration of such high-performance models into
clinical decision support systems, in tandem with explainability methods, is poised to maximize the practical
value of these technologies in early diagnostic processes and promote their adoption by clinicians.
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