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Abstract. In this paper, we present certain tridiagonal matrices associated with generalized bivariate
Fibonacci and Lucas polynomials and investigate the relationships between these matrices and polynomials.
We show that determinants and permanents of these tridiagonal matrices are generalized bivariate Fibonacci
and Lucas polynomials, which generalize known results for Fibonacci, Lucas, Pell, Jacobsthal, Fermat,
Morgan-Voyce, and Vieta polynomials in both univariate and bivariate forms.

1. Introduction

Polynomials defined by recurrence relations as generalizations of numbers have become an important
topic in modern algebra due to their wide applications in number theory, combinatorics, and matrix theory.
Fibonacci and Lucas polynomials, defined by the recurrence relations F,(x) = xF,_1(x) + F,—2(x) with initial
terms Fo(x) =0, F1(x) = 1, and L,(x) = xL;,—1(x) + L,—2(x) with initial terms Lo(x) = 2, L1(x) = x for n > 2, are
the most significant generalizations of the classical Fibonacci and Lucas numbers, respectively. There are
many studies on the Fibonacci and Lucas numbers, polynomials, and their generalizations in the literature
[1-3].

Bivariate Fibonacci and Lucas polynomials, which are generalizations of both Fibonacci and Lucas
numbers and polynomials, are defined by the recurrence relations F,(x, y) = xF,_1(x, y) + yF,—2(x, y) with
initial terms Fo(x,y) = 0,F1(x,y) = 1, and L,(x,y) = xL,-1(x, y) + yL,—(x, y) with initial terms Lo(x,y) =
2,Li(x,y) = x where x,y # 0, 2+ 4y # 0 for n > 2, respectively [4, 5]. Further generalizations of these
polynomials are presented using polynomials with real coefficients in their recurrence relations. For the
polynomials p(x,y) and g(x,y) with real coefficients, the generalized bivariate Fibonacci polynomials are
defined by the recurrence relation

Huy(x,y) = p( ) H-1(x ) + (G ) H—2(x, y), n=2 (1)

with initial terms Hy(x,y) = 0 and Hy(x,y) = 1. Similarly, the generalized bivariate Lucas polynomials are
defined by the recurrence relation

Ku(x,7) = p(G 7)Kna (X, ) + 906G 7)Kn2(x, ), n>2 2)
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with initial terms Ko(x, ) = 2 and Ki(x,y) = p(x, y). Sequences of the generalized bivariate Fibonacci and
Lucas polynomials are denoted by {H,(x,¥)}sen and {K,(x,¥)}uen, respectively. A fundamental relation
between these two sequences is expressed as

K (x, 7) =H,1(x, V) + ‘7()(/ Y)Hn—l()(/ )/) ©)]

Additionally, the main properties of the generalized bivariate Fibonacci and Lucas polynomial sequences
are examined through the use of general formulas [6]. In [7], generalized identities and related sums for
bivariate Fibonacci and Lucas polynomials, including even and odd terms, are presented using Binet’s
formula. Then, several new identities are derived using the generalized bivariate Fibonacci and Lucas
polynomials, including binomial summations, closed-form expressions for power sums, general summation
formulas, generating functions, and various related relations [8].

From equations (1) and (2), the special cases of the polynomials H,(yx, ) and K,(x, y), defined using the
polynomials p(x, y) and 4(x, y), are listed in Table 1.

Table 1: Special cases of the polynomials H,(x,y) and K, (x,y)

Polynomial Type Symbol Ho/Ky Hi/Ki plxy) qxy)
Fibonacci polynomials H,(x,7) = Fu(x) 0 1 X 1
Lucas polynomials Ku(x,7) = La(x) 2 X X 1
h(x)-Fibonacci polynomials H,(x,y) = Fpn(x) 0 1 h(x) 1
h(x)-Lucas polynomials Ku(x,7) = Lin(x) 2 h(x) h(x) 1
Fibonacci polynomials with two variables  H,(x,y) = Fu(x, y) 0 1 x Yy
Lucas polynomials with two variables Ku(x,7) = Lu(x, y) 2 X X y
Pell polynomials H,(x,7) = Pu(x) 0 1 2x 1
Pell-Lucas polynomials Ku(x, ) = Qu(x) 2 2x 2x 1
Jacobsthal polynomials H,(x,y) = Ju(x) 0 1 1 2x
Jacobsthal-Lucas polynomials Ku(x, ) = ju(x) 2 1 1 2x
Fermat polynomials H,(x,7) = ¢n(x) 0 1 3x -2
Fermat-Lucas polynomials Ku(x, y) = 9u(x) 2 3x 3x -2
Morgan-Voyce first kind polynomials H,(x,y) = Ba(x) 0 1 x+2 -1
Morgan-Voyce second kind polynomials K, (x,y) = Cp(x) 2 x+2  x+2 -1
Vieta polynomials H,(x,7) = Va(x) 0 1 X -1
Vieta-Lucas polynomials Ku(x, ) = vu(x) 2 X -1

Since all the results obtained in this study are presented for the entire family of the generalized bi-
variate Fibonacci and Lucas polynomials, the values provided in Table 1 can be directly substituted into
corresponding theorems for any specific polynomial in both univariate and bivariate forms.

In the literature, matrix theory, via structures such as determinantal and permanental representations
of specific matrices, has played a significant role in studies on the generalized Fibonacci and Lucas number
and polynomial sequences, allowing the derivation of various properties of these sequences [9-12].

Let A = [a;;] be an n X n matrix and S,, be the symmetric group of permutations over the set {1,2,...,n}.
The determinant of A, denoted by det(A), is defined as

n

det(A) = Z sgn(o) H o)

o€S, i=1

where sgn(c) denotes the signature of the permutation o, which equals +1 if ¢ is an even permutation and
—1if it is an odd permutation. Similarly, the permanent of A, denoted by per(A), is defined as

per(A) = 2 ]:n_[ﬂi,a(i)

€S, i=1
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where the summation extends over all permutations o € S,. Let A = [4;;] be an m X n real matrix with
row vectors r1,1y, ..., ty,. The matrix A is called contractible on column k if it contains exactly two nonzero
entries in column k. Suppose that A is contractible on column k such thata;; # 0 and ajx # 0 fori # j. Then,
the (m — 1) X (n — 1) matrix A, jx, obtained from A by replacing row i with a;;r; + a;xr; and subsequently
deleting row j and column k, is called the contraction of A on column k relative to rows i and j. Similarly, if
A is contractible on row k with ay; # 0 and a4y ; # 0 for i # j, the matrix Ay, ; = [AiT,j:k]T is called the contraction

of A on row k relative to columns i and j. Then, it is established that

per(A) = per(B) 4)

where A is a nonnegative integral matrix of order n > 1 and B is a contraction of A [13].
An n X n matrix A, = [a;] is called a tridiagonal matrix if 2; ; = 0 whenever [i — j| > 1, defined as follows

—ﬂl,l a2 0 0
a1 A2 A3
A" =10 azn> as3 0
: . An-1n
L 0 0 Apn-1 Ann |

Then, for A,, the n X n tridiagonal matrix, the determinant is given by

det(A,) = a,, det(An-1) — anp1ay-1,,det(A,2), n>2 (G))
where det(A1) = a11 and det(Az) = a20a1,1 — a21412 [14]. Specifically, tridiagonal matrices have been ex-
tensively used to establish a direct correspondence with generalized Fibonacci and Lucas numbers and
polynomials. Researchers have investigated the connections between such number and polynomial se-
quences and various matrices through determinantal and permanental representations. In [14], Fibonacci
and Lucas numbers were represented as determinants of tridiagonal matrices, highlighting the connections
between these classical sequences and matrix structures. In [15], the permanents of certain tridiagonal
matrices were investigated with applications to Fibonacci and Lucas numbers. In [16], permanental rep-
resentations of Fibonacci and Lucas p-numbers were established, along with their connections to certain
combinatorial structures. In [17], two n X n tridiagonal matrix families were studied, and the relationships
between the permanents of these matrices and the Pell and Jacobsthal sequences were presented. In [18],
the period of the generalized Fibonacci sequence over a finite ring was studied, and connections with tridi-
agonal matrices were investigated. In [19], determinantal and permanental representations of g-Fibonacci
polynomials were presented, providing a matrix-based approach to their properties. In [20], Pell poly-
nomials P,(x,s,q) and their connections with tridiagonal matrices were studied, highlighting structural
properties and matrix representations.

The aim of this study is to investigate the relationship between the generalized bivariate Fibonacci and
Lucas polynomials and various tridiagonal matrices. For this purpose, we present several determinantal
and permanental representations of the generalized bivariate Fibonacci and Lucas polynomials using
different tridiagonal matrices.

2. The Determinantal Representations

In this section, we define certain tridiagonal matrices and show that the determinants of these matrices
give terms of the generalized bivariate Fibonacci and Lucas polynomial sequences, {H,(x,y)}sen and
{Ki(X, ¥)}nen, respectively.

The following theorems present the determinantal representations of the generalized bivariate Fibonacci
polynomials.
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Theorem 2.1. Let H,(x,)) be the nth generalized bivariate Fibonacci polynomial, and let E,, = (e;5) be an n X n
tridiagonal matrix whose entries are defined as

1, ifr=s-1,
p(x,y), ifr=s,

-q(x,y), ifr=s+1,
0, otherwise,

rs —

where p(x,v) and q(x,y) are polynomials with real coefficients. Explicitly,

[ p(x, ) 1 0 0 0 0
-q(x,7)  px,7) 1 0 0 0
0 -7 rx,y) 1 0 0
E,=| O 0 -0y ply) 0 0
0 0 0 0 o p(xy) 1

0 0 0 0 o =q(Gy) PG )]

Let F, = (E,)T. Then, for n > 1, it holds that
det(E,) = det(F,) = Hu+1(x, 7/)

Proof. We prove the result by mathematical induction on n. We first show that det(E,) = H,+1(x, ) for
n > 1. The result is true for n = 1, 2. Now, assume that it holds for n € Z*, namely, det(E,) = Hy+1(x, 7). We
show it is true for n + 1. Using the induction hypothesis and equations (1) and (5), we obtain

det(E, 1) = €n+1,n+1 det(E,) - €n+1,nCn,n+1 det(E;-1)
= p(x,y) det(E,) — (=q(x, y)(1)) det(E,-1)
= p(x,y) det(En) + q(x, y) det(Eq-1)
= p(X, V) Hue1(x, y) + 9(x, V) Ha (X, 7)
= Hn+2(Xr 7/)

Hence, by induction, det(E,) = H,+1(x, y) for all n > 1. Next, consider F,, = (E,)T. Since the determinant is
invariant under transposition, det(E,) = det(F,) is directly obtained. By combining this with the previously
established result, we obtain

det(E,) = det(F,) = Hy1(x, )

which completes the proof. [
The following theorem generalizes the previous result to the case where the matrix entries are complex.

Theorem 2.2. Let H,(x,y) be the nth generalized bivariate Fibonacci polynomial, and let G, = (gys) be an n X n
tridiagonal matrix whose entries are defined by

i ifr=s-1,
_ P(Xr)/)/ lfr =S,

T iq(x,y), ifr=s+1,
0, otherwise,
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where i = N=1and p(x,y),q(x,y) are polynomials with real coefficients. Explicitly,

[ p(x,7) i 0 0 - 0 0
iqx,y) p(x,7) i 0o - 0 0
G,=| O 0 iqx,y) p(x,7) 0 0
0 0 0 o - ply i

0 0 0 0 - iqx,y) p(x,Y)]

Let T, = (G,)T. Then, for n > 1, it holds that
det(Gn) = det(Tn) = Hn+1(X/ V)

Proof. We prove the result by mathematical induction on n. We first show that det(G,) = H,+1(x,)) for
n > 1. The result is true for n = 1,2. Now, assume that it holds for n € Z*, namely, det(G,,) = Hu11(x, 7). We
show it is true for n + 1. Using the induction hypothesis and equations (1) and (5), we obtain

det(Gu+1) = Fnrtne1 det(Gu) = Frnst,nGnnr1 det(Gu1)
= p(x, y) det(Gn) — (iq(x, y)(©) det(Gp-1)
= p(x, 7) det(Gy) — (%(x, 7)) det(Gu1)
= p(x,y) det(Gn) + q(x, y) det(G,-1)
=P V) e (X, 7) + 40 ) Ha(x, 7)
= Hu2(x, V)~
Hence, by induction, det(G,,) = Hu+1(x, y) for all n > 1. Next, consider T, = (G,)T. Since the determinant is

invariant under transposition, det(G,) = det(T,) is directly obtained. By combining this with the previously
established result, we obtain

det(G,) = det(T,,) = Hu1(x, )
which completes the proof. [

Next, we present the theorems that provide determinantal representations of the generalized bivariate
Lucas polynomials.

Theorem 2.3. Let K,(x,y) be the nth generalized bivariate Lucas polynomial, and let U, = (u,s) be an n X n
tridiagonal matrix whose entries are defined by

2, ifr=1,s=2,
1, ifr=s—landr#1,
us =9 px,y), ifr=s,
—q(x,y), fr=s+1,

0, otherwise,

where p(x,v) and q(x,y) are polynomials with real coefficients. Explicitly,

[ p(x,7) 2 0 0 0 0
-q(x,7)  rx,y) 1 0 0 0
0 -q(x,7)  px,y) 1 0 0
u,=| 0O 0 -q(x,y) px,y) 0 0
0 0 0 o - px,y) 1

0 0 0 0 - =) P
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Let V,, = (U,)T. Then, for n > 1, it holds that
det(U,,) = det(V,) = K, (x, V)

Proof. We prove the result by mathematical induction on n. We first show that det(U,) = K,,(x,y) forn > 1.
The result is true for n = 1,2. Now, assume that it holds for n € Z*, namely, det(U,,) = K, (x, 7). We show it
is true for n + 1. Using the induction hypothesis and equations (2) and (5), we obtain

det(Uy,41) = Un+1,n+1 det(U,) — Up+1,nUnn+1 det(U,-1)
= p(x, y) det(U,) — (—q(x, ¥)(1)) det(Uy-1)
= p(x, y) det(U,) +g(x, y) det(Uy,-1)
= p(, VKa(x, ) + 90 7)Kna (X, )
= Kus1(x, 7/)-

Hence, by induction, det(U,) = K,(x,y) for all n > 1. Next, consider V,, = (U,)T. Since the determinant is
invariant under transposition, det(U,) = det(V,,) is directly obtained. By combining this with the previously
established result, we obtain

det(U,) = det(V,) = Ku(x,7)

which completes the proof. 0O
The following theorem generalizes the previous result to the case where the matrix entries are complex.

Theorem 2.4. Let K,(x,y) be the nth generalized bivariate Lucas polynomial, and let W, = (w,s) be an n X n
tridiagonal matrix whose entries are defined by

2i, ifr=1,s=2,
i ifr=s—landr#1,
wrs =1 p(x,y), ifr=s,
iqQ,y), ifr=s+1,
0, otherwise,

where i = N=1and p(x,y),q(x,y) are polynomials with real coefficients. Explicitly,

[ p(x,7) 2i 0 0 0 0
iqx,7) r(x,7) i 0 0 0

0 iqx,7) p(x,7) i 0 0

0 0 0 0 - plx,y) i

0 0 0 0 - iglv,y) p(Y)]

Let Z, = (W,)T. Then, for n > 1, it holds that
det(W,) = det(Z,) = Ky.(x, 7/)

Proof. We prove the result by mathematical induction on n. We first show that det(W,) = K, (x,y) forn > 1.
The result is true for n = 1,2. Now, assume that it holds for n € Z*, namely, det(W,) = K,,(x, y). We show it
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is true for n + 1. Using the induction hypothesis and equations (2) and (5), we obtain
det(Wy41) = Whi1,n41 det(Wy,) — Wyi1,5Wh ne1 det(W,_1)

= p(x, y) det(Wy) = (iq(x, y)(¥)) det(Wy-1)

= p(x, ) det(Wy) = (#q(x, ) det(Wy-1)

= p(x, ) det(Wy) +4(x, y) det(Wy-1)

=P YK y) + 900 7)Kn-1(x, y)

= Ku1 (X, 7)-
Hence, by induction, det(W,,) = K,,(x,y) for all n > 1. Next, consider Z, = (W,)T. Since the determinant is
invariant under transposition, det(W,) = det(Z,) is directly obtained. By combining this with the previously

established result, we obtain
det(Wy) = det(Z,) = Ku(x, )

which completes the proof. [

3. The Permanental Representations

In this section, we define certain tridiagonal matrices and show that the permanents of these matrices
give terms of the generalized bivariate Fibonacci and Lucas polynomial sequences, {H,(x,))}sen and
{Ki(X, ¥)}nen, respectively.

The following theorems present the permanental representations of the generalized bivariate Fibonacci
polynomials.

Theorem 3.1. Let H,(x,)) be the nth generalized bivariate Fibonacci polynomial, and let &, = (e;s) be an n X n
tridiagonal matrix whose entries are defined by

1, ifr=s-1,
_ Qo) ifr=s,
rs — .
qx,y), ifr=s+1,
0, otherwise,
where p(x,v) and q(x,y) are polynomials with real coefficients. Explicitly,
pOoy) 1 0 0 0 0
axy) ry) 1 0 0 0
0 9y ploy) 1 0 0
&= 0 0 g9y pxy) 0 0
0 0 0 0 oplry) 1
0 0 0 0 () pOuy)]

Let ¥ = (En)T. Then, for n > 1, it holds that

per(&E,) = per(F) = Hur1(X, ).

Proof. We first show that per(&E,) = Hu+1(x,y) for n > 1 by using the matrix contraction method. Let &

(1)
n

denote the rth contraction of &, for 1 < r < n — 2. By contracting &, on its first column, we get

ooy +ay) pley) 0 -0 0
0 _ 0 ax.y) pix,y) - 0 0
0 0 0 - ply 1

0 0 0 - q0uy) pOoY)
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[Hz(x,v) Ha(x,y) 0
qx.y)  r(x,y) 1

0 ay)  px.y)

0 0 0

0
0
0

P 7)
q(x,y) p(x. )]

]

1

80

where H3(x,7) = p*(x,7) + q(x,7) and Ha(x, y) = p(x,y). Similarly, by contracting &Y on the first column,

0 0 0
we obtain
P20 y) + 2000 )0 y) PROGy) +a(x,y)
q(x,7) p(x,y)
£ _ 0 900, 7)
0 0
0 0
and

[Hi(x,7) Hz(x,y) 0
qx, ) p(x.,y) 1

0 ay) . y)

0 0 0
0 0 0

0
1

p(x,7)

0
0
0

0
0

p(6,7)
ax. 7)) px,y)]

o

1

0 0
0 0
0 0
p(x,7) 1

q(x,y) )

where Hi(x,7) = p*(x, ) + 2p(x,7)q(x, y). Continuing this process iteratively, the rth contraction of &, is

obtained by

&Y =

for 3 < r < n— 4. Specifically, for r = n — 3, the contraction gives

By further contracting &

g2 _ [PO0 ) Hia (6 7) + 06 ) Hi2(x, ) Hn—l(XrV)]
! q(x.y) P(x,7)

(n-3)
n

Hr2(x,7) Hrai(x,y) 0

q(x,y) p(x,7) 1

0 9x.y)  px,y)
0 0 0
0 0 0

M=\ qi,y) P,y

0 q(x,y)

anl()(/ V) Hn72(X/ )/)

0
0
0

P(X', Y)
qx,7) p(x. )]

0
1

p(x,7)

0
0
0

1

on its first column and using equation (1), we obtain

Finally, from equations (1) and (4), we have

Hn()(,)/) Hn—l(X/y)
oY) poy) |

per(&,) = per(Ey ) = p(x, V)Ha(X,Y) + 900, V) Hua (X, 7) = Hua (X, 7).
Next, consider 7, = (&E,)". Since the permanent is invariant under transposition, per(&,) = per(¥,) is
directly obtained. By combining this with the previously established result, we obtain

which completes the proof. [

per(&Ey) = per(Fn) = Hua (X, ),
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The following theorem generalizes the previous result to the case where the matrix entries are complex.

Theorem 3.2. Let H,(x,y) be the nth generalized bivariate Fibonacci polynomial, and let G, = (grs) be an n X n
tridiagonal matrix whose entries are defined by

—i, ifr=s-1,
p(x,y), ifr=s,

ig(x,y), ifr=s+1,
0, otherwise,

Jrs =

wherei = V=1and p(x,y), 9(x, y) are polynomials with real coefficients. Explicitly,

(X, 7) —i 0 0 - 0 0
iqx,y) px, ) —i 0o - 0 0
0 igl,y) py) -1 e 0 0
G,=| © 0 iqley) px.y) 0 0
0 0 0 0 - plx,y) —i

0 0 0 0 - iqx,y) p(x,»)]

Let T = (Gn)". Then, for n > 1, it holds that

per(G,) = per(T) = Hu1(x, p)-

Proof. We prove the result by mathematical induction on n. We first show that per(G,) = Hu+1(x,y) by
computing all permanents using the Laplace expansion with respect to the first row for n > 1. The result is
true for n = 1,2. Now, assume that it is true for n € Z*, namely, per(G,) = Hu+1(x,y). We show that it is
true for n + 1. By applying the Laplace expansion for permanents with the first row of G,.+1, we obtain

roy) i o - 0 iqQy) 0

iqCey) pOGy) -0 0 py) i

per(G) =pe,y)per| O W) pOoy) 0y per| O #(GY) pOGY)
e o o o

By expanding the second permanent with its first column, we obtain

rx,y)  —i 0

iqx,y) poy) o0

per(Gu+1) = p(x, y) per(Gn) + (—i)(ig(x, y)) per : : . :
0 0 e p(Xr 7/) (n—=1)x(n-1)

= p(x, ) per(@n) +q(x, 7) per(Gu-1)-
By the inductive hypothesis and using equation (1), it follows that
per(Gus1) = PO V) Hua1 (X, ¥) + 400, Y)Ha (X, ¥) = Huva (X, 7)-

Next, consider 7, = (G,)". Since the permanent is invariant under transposition, per(G,) = per(75) is
directly obtained. By combining this with the previously established result, we obtain

per(Gy) = per(Ty) = Husa(x, )
which completes the proof [

0
0
0

p(X’y) nxn



Y. Tagyurdu, B. Aydan /TJOS 10 (2), 73-85 82

Next, we present the theorems that provide permanental representations of the generalized bivariate
Lucas polynomials.

Theorem 3.3. Let K,(x,y) be the nth generalized bivariate Lucas polynomial, and let U, = (u.) be an n X n
tridiagonal matrix whose entries are defined by

2, ifr=1,s=2,
1, ifr=s—landr#1,
us = qp(x,y), ifr=s,
qaxy), ifr=s+1,

0, otherwise,

where p(x,v) and q(x, y) are polynomials with real coefficients. Explicitly,

[r(x,y) 2 0 0 0 0
a0, y) pix.y) 1 0 0 0
0 g9ty rix.7) 1 0 0
u,=| 0 0 g0y prx.7) 0 0
0 0 0 o - plxy) 1

0 0 0 0 96y PG )]

Let V, = (Uy,)T. Then, for n > 1, it holds that
per(Uy,) = per(Vy,) = Ku(x,7)-

Proof. We first demonstrate that per(U,,) = K, (x, y) for n > 1 by employing the matrix contraction method.
Let ’Ui,y) denote the rth contraction of U, for 1 < v < n — 2. By contracting U, on its first column, we obtain

q(x,y) p(x,7) 1 e 0 0
(u(l) _ 0 qx,y) px,y) - 0 0
0 0 0o - px,y) 1
0 0 0 - gy Pl
and
[Ka(x,7) Ki(x,y) 0 0 0
q(x,y)  p(x.y) 1 0 0
|0 ax ) pxy) 0 0
0 0 0 o p(xy) 1
0 0 0 g0 y) PGy

where Kx(x,7) = p*(x, 7) + 29(x,y) and Ki(x, y) = p(x, 7). Similarly, by contracting (Lli,l) on its first column,
we get

P00y) + 300G y) PPoGy) +2900y) 00 -0 0
q(x,7) p(x, ) 1 e 0 0
4o = 0 7(x,7) p(x,y) - 0 0
0 0 0 - opy) 1

0 0 0 - qy) P
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and
[K3(x,7) Ka(x,y) 0 0 0
a7 p(y) 1 0 0
|10 axy)  py) 0 0
0 0 0 pGoy) 1
0 0 0 ax.y) pOy).
where Ks(x,7) = p*(x,7) + 3p(x,7)4(x, 7). Continuing this process iteratively, the rth contraction of U, is
obtained by
(KX, y) K(x,y) 0 0 0
ax.y)  pxy) 1 0 0
U = 0 m@w P@W) 0 0
0 0 0 - opey 1
0 0 0 a0y Pl y)]

for 3 < r < n — 4. Specifically, for r = n — 3, the contraction gives

Ki2(x,7) Kus(x,7) 0
q(x,y) r(x,7) 1
0 q(x,y)  prx,y)

U -

By further contracting U on its first column and using equation (2), we obtain

(L{(H—Z) — P(Xr y)Kn—2(X/ V) + q()(r y)Kn—3(X/ 7/) Kn—Z(X/ )/)] — [Kn—l (Xr 7/) Kn—Z(Xr )/)
" qa(x, y) p(x.,7) q(x,y) P y) |

Finally, from equations (2) and (4), we have

per(U,) = per(U ) = p(x, V)Kn1(X, ) + 40X, 7)Ku2(x, 1) = Ku(X, ).

Next, consider V,, = (U,)!. Since the permanent is invariant under transposition, per(,) = per(V,) is
directly obtained. By combining this with the previously established result, we obtain

per((L{n) = Per((Vn) = K,(x, ),

which completes the proof. [
The following theorem generalizes the previous result to the case where the matrix entries are complex.

Theorem 3.4. Let K, (x,y) be the nth generalized bivariate Lucas polynomial, and let ‘W, = (wys) be an n X n
tridiagonal matrix whose entries are defined by

—2i, ifr=1,s=2,
-1, ifr=s—landr#1,
wrs =3p(x,y), ifr=s,
iqix,y), ifr=s+1,
0, otherwise,
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where i = N=1and p(x,y) and q(x,y) are polynomials with real coefficients. Explicitly,

[p(x,y) —=2i 0 0 0 0
iq(x,y)  px,y) ~i 0 0 0
0 iq(x,y) px,y)  —i 0 0
w,=| O 0 gy p(x.7) 0 0
0 0 0 0 - p(xy) —i
0 0 0 0 - gy px.v)

Let Z, = (W,)T. Then, for n > 1, it holds that
Pef(wn) = Pef(Zn) = Ky (x, 7/)

Proof. We prove the result by mathematical induction on n. We first show that per(‘W,) = K,(x,y) by
computing all permanents using the Laplace expansion with respect to the first row for n > 1. The result is
true for n = 1,2. Now, assume that it is true for n € Z*, namely, per(‘W,) = K, (x, ). We show that it holds
for n + 1 by utilizing the permanental representation of the generalized bivariate Fibonacci polynomials
established in Theorem 3.2. By applying the Laplace expansion for permanents with the first row of W1,
we obtain

P(X,V) —i 0' 0 iq()(,y) —i (). 0

1‘7()(/ )/) P(X/ 7/) -1 0 0 p()(, )/) S 0

per(Wou1) = p(x,yyper| O @00 py) - 0y 2iper| O #0y) ploy) -+ 0
0 0 0 p()(/y) i 0 0 0 P(Xr)/) o

By expanding the second permanent with its first column and using Theorem 3.2, we obtain

per(Wia) = p(x, y) per(Gn) + (=20)(iq(x, y)) per | . : - :
0 0 e P()(/ V) (n-1)x(n—-1)

=p(x,y) per(Gn) + 29(x, y) per(Gu-1)-

By using Theorem 3.2 and the relationship in equation (3), it follows that

per(Woi1) = p(x, V)Hu1 (X, ) + 29(x, Y)Hu(X, )
= Huw2(x, y) + 90, v)Hu(X, 1)
=K1 (X, 7).

Next, consider Z, = (W,)T. Since the permanent is invariant under transposition, per(W,) = per(Z,)
is directly obtained. By combining this with the previously established result, we obtain

per(W,) = per(Zy) = Ku(x, )

which completes the proof. [
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4. Conclusion and Suggestion

In this study, generalized bivariate Fibonacci and Lucas polynomial sequences are investigated via
defined tridiagonal matrices. Using matrix-based methods, determinantal and permanental representations
for these sequences are established. It is shown that the determinants and permanents of these matrices
give the generalized bivariate Fibonacci and Lucas polynomials, thereby extending the Fibonacci and
Lucas polynomials in both univariate and bivariate forms and generalizing several well-known results in
the literature.

It would be interesting to explore multivariate generalizations, their applications in combinatorics,
graph theory, and coding theory, and further study of determinantal and permanental properties of related
polynomial sequences.
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