
TURKISH JOURNAL OF SCIENCE
VOLUME 10, ISSUE 2, 59–72
ISSN: 2587–0971

https://www.tjoscience.com

Steffensen-Type Integral Inequalities for Functions with s-Convex
Absolute n-th Derivatives
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aBandırma Onyedi Eylül University, Graduate School, Balıkesir, Türkiye
bBandırma Onyedi Eylül University, Bandırma Vocational School, Balıkesir, Türkiye

Abstract. In this paper, we establish new Steffensen-type integral inequalities for functions whose absolute
nth derivatives are s-convex in the second sense. By deriving an appropriate integral representation
and employing inequalities such as Hölder, power-mean, and Young, we obtain several explicit upper
bounds expressed in terms of endpoint values of the absolute n-th derivative of f. The obtained results
generalize Steffensen-type inequalities to the s-convex framework and provide a unified treatment of
different analytical techniques within this setting.

1. INTRODUCTION

Let I ⊆ R be a nonempty interval. For a fixed parameter s ∈ (0, 1], a function f : I → R is said to be
s-convex in the second sense if for all x1, x2 ∈ I and for all t ∈ [0, 1], the inequality

f (tx1 + (1 − t)x2) ≤ t s f (x1) + (1 − t) s f (x2) (1)

holds. If the inequality in (1) is reversed, then f is said to be s-concave.
The classical Hermite–Hadamard inequality admits the following generalization for s-convex functions.

If f : I→ R is s-convex in the second sense and f is integrable on [a, b] ⊂ I, then

2 s−1 f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
s + 1

. (2)

For further insights into s-convex functions and related variants of the Hermite–Hadamard inequality, the
reader is referred to the following references: [2–6, 15].

In 1918, J. F. Steffensen established the celebrated inequality given in [1]

Theorem 1.1. Suppose that f and 1 are integrable functions defined on (a, b) , f is decreasing and for each t ∈
(a, b) , 0 ≤ 1 (t) ≤ 1. Then, the following inequality∫ b

b−λ
f (t) dt ≤

∫ b

a
f (t) 1 (t) dt ≤

∫ a+λ

a
f (t) dt (3)

holds, where λ =
∫ b

a 1
(t) dt.
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The Steffensen inequality has since become a central topic of investigation, and numerous generalizations
and related developments can be found in [8–14].

In [7] , Alomari derived the following Steffensen-type identities by employing an integral representation
introduced in [12].

Theorem 1.2. [7]Let f , 1 : [a, b] ⊂ R+ → R be integrable such that 0 ≤ 1 (t) ≤ 1, for all t ∈ [a, b] such that∫ b

a 1
(t) f ′ (t) dt exists. If f is absolutely continuous on [a, b] such that

∣∣∣ f ′∣∣∣ is s-convex on [a, b] , for some fixed
s ∈ (0, 1) then we have ∣∣∣∣∣∣

∫ a+λ

a
f (t) dt −

∫ b

a
f (t) 1 (t) dt

∣∣∣∣∣∣ (4)

≤
1

(s + 1) (s + 2)

[
λ2

∣∣∣ f ′ (a)
∣∣∣ + (b − a − λ)2

∣∣∣ f ′ (b)
∣∣∣]

+
1

s + 2

[
λ2 + (b − a − λ)2

]
f ′ (a + λ)

and ∣∣∣∣∣∣
∫ b

a
f (t) 1 (t) dt −

∫ b

b−λ
f (t) dt

∣∣∣∣∣∣ (5)

≤
1

(s + 1) (s + 2)

[
λ2

∣∣∣ f ′ (b)
∣∣∣ + (b − a − λ)2

∣∣∣ f ′ (a)
∣∣∣]

+
1

s + 2

[
λ2 + (b − a − λ)2

]
f ′ (b − λ) .

where λ :=
∫ b

a 1
(t) dt.

In [13], Ekinci et al. established the following four results for functions whose absolute value of the nth

derivative is convex where λ :=
∫ b

a 1(t) dt and

T1
n =

∫ b

a
1(x)

(a + λ − x) n−1

(n − 1)!
f (n−1)(x) dx,

T2
n =

∫ b

a
1(x)

(b − λ − x) n−1

(n − 1)!
f (n−1)(x) dx,

I1
n =

∫ a+λ

a
f (x) dx −

n−2∑
k=1

λk

k!
f (k−1)(a),

I2
n =

∫ b

b−λ
f (x) dx +

n−1∑
k=1

(−λ)k

k!
f (k)(b).

Theorem 1.3. Let f : [a, b]→ R be differentiable n times and assume that | f (n)
| is convex on [a, b]. Let 1 : [a, b]→

[0, 1] be integrable and set λ =
∫ b

a 1(t) dt. Then the following inequalities hold:∣∣∣∣∣∣∣
∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)∣∣∣∣∣∣∣
≤

nλn+1

(n + 2)!
| f (n)(a)| +

n(b − a − λ) n+1

(n + 2)!
| f (n)(b)|

+
2
(
λn+1 + (b − a − λ)n+1

)
(n + 2)!

| f (n)(a + λ)|.

(6)
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and

∣∣∣∣∣∣∣
∫ b

a
f (t)1(t) dt −

∫ b

b−λ
f (t) dt +

n−1∑
k=1

(
T2

k − I2
k

)∣∣∣∣∣∣∣ (7)

≤
nλn+1

(n + 2)!
| f (n)(b)| | f (n)(a + λ)| +

n(b − a − λ) n+1

(n + 2)!
| f (n)(a)|

+
2
(
λn+1 + (b − a − λ)n+1

)
(n + 2)!

. (8)

Theorem 1.4. Let f : [a, b]→ R be n-times differentiable and assume that | f (n)
|
q is convex on [a, b]. Let 1 : [a, b]→

[0, 1] be integrable and define λ =
∫ b

a 1(t) dt. Let 1 < p < ∞ and q = p
p−1 . Then the following two inequalities hold:

∣∣∣∣∣∣∣
∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)∣∣∣∣∣∣∣
≤

λn+1

(n − 1)! 21/q

(
p! (p(n − 1))!

(pn + 1)!

)1/p (
| f (n)(a)|q + | f (n)(a + λ)|q

)1/q

+
(b − a − λ) n+1

(n − 1)! 21/q

(
p! (p(n − 1))!

(pn + 1)!

)1/p (
| f (n)(a + λ)|q + | f (n)(b)|q

)1/q

(9)

and ∣∣∣∣∣∣∣
∫ b

a
f (t)1(t) dt −

∫ b

b−λ
f (t) dt +

n−1∑
k=1

(
T2

k − I2
k

)∣∣∣∣∣∣∣
≤

(b − a − λ) n+1

(n − 1)! 21/q

(
p! (p(n − 1))!

(pn + 1)!

)1/p (
| f (n)(a)|q + | f (n)(b − λ)|q

)1/q

+
λn+1

(n − 1)! 21/q

(
p! (p(n − 1))!

(pn + 1)!

)1/p (
| f (n)(b − λ)|q + | f (n)(b)|q

)1/q
.

(10)

Theorem 1.5. Let f : [a, b] → R be n-times differentiable and let 1 : [a, b] → [0, 1] be integrable. Define
λ :=

∫ b

a 1(t) dt,and assume that | f (n)
|
q is convex on [a, b] for some q ≥ 1. Then the following inequalities hold:∣∣∣∣∣∣∣

∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)∣∣∣∣∣∣∣
≤

λn+1

(n + 1)!

[ n
n + 2

∣∣∣ f (n)(a)
∣∣∣q + 2

n + 2

∣∣∣ f (n)(a + λ)
∣∣∣q]1/q

+
(b − a − λ) n+1

(n + 1)!

[ n
n + 2

∣∣∣ f (n)(a + λ)
∣∣∣q + 2

n + 2

∣∣∣ f (n)(b)
∣∣∣q]1/q (11)

and
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∫ b

a
f (t)1(t) dt −

∫ b

b−λ
f (t) dt +

n−1∑
k=1

(
T2

k − I2
k

)∣∣∣∣∣∣∣
≤

(b − a − λ) n+1

(n + 1)!

[ n
n + 2

∣∣∣ f (n)(a)
∣∣∣q + 2

n + 2

∣∣∣ f (n)(b − λ)
∣∣∣q]1/q

+
λn+1

(n + 1)!

[ n
n + 2

∣∣∣ f (n)(b − λ)
∣∣∣q + 2

n + 2

∣∣∣ f (n)(b)
∣∣∣q]1/q . (12)

Theorem 1.6. Let f : [a, b] → R be n-times differentiable and let 1 : [a, b] → [0, 1] be integrable. Define
λ :=

∫ b

a 1(t) dt, µ := b − a − λ,and let q > 1 and p = q
q−1 . Assume that | f (n)

|
q is convex on [a, b]. Then the

following inequalities hold:

∣∣∣∣∣∣∣
∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)∣∣∣∣∣∣∣
≤

1
(n − 1)!

{
Γ(p + 1)Γ

(
p(n − 1) + 1

)
pΓ(pn + 2)

(
λpn+1 + µpn+1

)
+

1
2q

[
λ
(∣∣∣ f (n)(a)

∣∣∣q + ∣∣∣ f (n)(a + λ)
∣∣∣q) + µ(∣∣∣ f (n)(a + λ)

∣∣∣q + ∣∣∣ f (n)(b)
∣∣∣q)]} (13)

and ∣∣∣∣∣∣∣
∫ b

a
f (t)1(t) dt −

∫ b

b−λ
f (t) dt +

n−1∑
k=1

(
T2

k − I2
k

)∣∣∣∣∣∣∣
≤

1
(n − 1)!

{
Γ(p + 1)Γ

(
p(n − 1) + 1

)
pΓ(pn + 2)

(
λpn+1 + µpn+1

)
+

1
2q

[
µ
(∣∣∣ f (n)(a)

∣∣∣q + ∣∣∣ f (n)(b − λ)
∣∣∣q) + λ(∣∣∣ f (n)(b − λ)

∣∣∣q + ∣∣∣ f (n)(b)
∣∣∣q)]}. (14)

The Gamma and Beta functions will play a fundamental role in the analysis carried out in this work.
For x > 0, the Gamma function is defined by

Γ(x) =
∫
∞

0
t x−1e−t dt,

and serves as a continuous extension of the factorial, since Γ(n) = (n − 1)! for every positive integer n. The
Beta function is defined through

B(α, β) =
∫ 1

0
tα−1(1 − t) β−1 dt, α, β > 0,

and is linked to the Gamma function via the classical relation

B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

.

These special functions arise naturally in the evaluation of several kernel integrals, and they will be used
throughout the sequel to present our results in a clear and compact manner.
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2. MAIN RESULTS

In order to obtain the results of this section, we require the following lemma introduced by Ekinci et al.
[13].

Lemma 2.1. Let f , 1 : [a, b] ⊂ R+ → R be integrable such that 0 ≤ 1(t) ≤ 1 for all t ∈ [a, b] and
∫ b

a
1(t) f (k)(t) dt

exists for k = 1, 2, . . . ,n. Then, we have the following identities:

∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)
(15)

= −

∫ a+λ

a

(∫ x

a
(1 − 1(t)) dt

)
(a + λ − x) n−1

(n − 1)!
f (n)(x) dx

−

∫ b

a+λ

(∫ b

x
1(t) dt

)
(a + λ − x) n−1

(n − 1)!
f (n)(x) dx,

and ∫ b

a
f (t)1(t) dt −

∫ b

b−λ
f (t) dt +

n−1∑
k=1

(
T2

k − I2
k

)
(16)

= −

∫ b−λ

a

(∫ x

a
1(t) dt

)
(b − λ − x) n−1

(n − 1)!
f (n)(x) dx

−

∫ b

b−λ

(∫ b

x
(1 − 1(t)) dt

)
(b − λ − x) n−1

(n − 1)!
f (n)(x) dx,

where

λ :=
∫ b

a
1(t) dt

and

T1
n =

∫ b

a
1(x)

(a + λ − x) n−1

(n − 1)!
f (n−1)(x) dx,

T2
n =

∫ b

a
1(x)

(b − λ − x) n−1

(n − 1)!
f (n−1)(x) dx,

I1
n =

∫ a+λ

a
f (x) dx −

n−2∑
k=1

λk

k!
f (k−1)(a),

I2
n =

∫ b

b−λ
f (x) dx +

n−1∑
k=1

(−λ)k

k!
f (k)(b).

Throughout the paper, the notations T1
n, T2

n, I1
n and I2

n will be used as defined above.

Theorem 2.2. Let f : [a, b] → R be n-times differentiable on [a, b]. Assume that | f (n)
| is s–convex in the second

sense on [a, b] for some s ∈ (0, 1]. Let 1 : [a, b]→ [0, 1] be integrable and set λ =
∫ b

a 1(t) dt, µ = b − a − λ. Then, the
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following inequalities hold:∣∣∣∣∣∣∣
∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)∣∣∣∣∣∣∣
≤

λn+1

(n − 1)!(n + s)(n + s + 1)
| f (n)(a)| +

Γ(s + 2)
Γ(n + s + 2)

(
λn+1 + µn+1

)
| f (n)(a + λ)|

+
µn+1

(n − 1)!(n + s)(n + s + 1)
| f (n)(b)|,

(17)

and ∣∣∣∣∣∣∣
∫ b

a
f (t)1(t) dt −

∫ b

b−λ
f (t) dt +

n−1∑
k=1

(
T2

k − I2
k

)∣∣∣∣∣∣∣
≤

λn+1

(n − 1)!(n + s)(n + s + 1)
| f (n)(b)| +

Γ(s + 2)
Γ(n + s + 2)

(
λn+1 + µn+1

)
| f (n)(a + λ)|

+
µn+1

(n − 1)!(n + s)(n + s + 1)
| f (n)(a)|.

(18)

Proof. From Lemma 2.1, we have

L :=
∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)
= K1

n,

where

K1
n = −

∫ a+λ

a

(∫ x

a
(1 − 1(t)) dt

)
(x − a − λ) n−1

(n − 1)!
f (n)(x) dx

−

∫ b

a+λ

(∫ b

x
1(t) dt

)
(x − a − λ) n−1

(n − 1)!
f (n)(x) dx.

Since 0 ≤ 1(t) ≤ 1, the inner integrals satisfy 0 ≤
∫ x

a (1 − 1(t)) dt ≤ x − a and 0 ≤
∫ b

x 1(t) dt ≤ b − x.
Hence taking absolute values and using the triangle inequality gives

|L| ≤ I1 + I2,

where

I1 =
1

(n − 1)!

∫ a+λ

a
(x − a)(a + λ − x) n−1

| f (n)(x)| dx,

I2 =
1

(n − 1)!

∫ b

a+λ
(b − x)(x − a − λ) n−1

| f (n)(x)| dx.

Applying the substitutions

x = t(a + λ) + (1 − t)a, x = kb + (1 − k)(a + λ),
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and using the s-convexity of | f (n)
|, we obtain

|I1| ≤
λn+1

(n − 1)!

∫ 1

0
t(1 − t)n−1

(
(1 − t)s

| f (n)(a)| + ts
| f (n)(a + λ)|

)
dt

=
λn+1

(n − 1)!

[
| f (n)(a)|

∫ 1

0
t(1 − t)n−1+s dt + | f (n)(a + λ)|

∫ 1

0
ts+1(1 − t)n−1 dt

]
,

|I2| ≤
µn+1

(n − 1)!

∫ 1

0
k n−1(1 − k)

(
(1 − k)s

| f (n)(a + λ)| + ks
| f (n)(b)|

)
dk

=
µn+1

(n − 1)!

[
| f (n)(a + λ)|

∫ 1

0
k n−1(1 − k)1+s dk + | f (n)(b)|

∫ 1

0
k n−1+s(1 − k) dk

]
.

Evaluating these integrals using the properties of the Beta and Gamma functions yields

∫ 1

0
t(1 − t)n−1+s dt = B(2,n + s) =

Γ(n + s)Γ(2)
Γ(n + s + 2)

=
1

(n + s)(n + s + 1)
,∫ 1

0
ts+1(1 − t)n−1 dt = B(s + 2,n) =

Γ(s + 2)Γ(n)
Γ(n + s + 2)

=
Γ(s + 2)(n − 1)!
Γ(n + s + 2)

,∫ 1

0
k n−1(1 − k)1+s dk = B(n, s + 2) =

Γ(n)Γ(s + 2)
Γ(n + s + 2)

=
Γ(s + 2)(n − 1)!
Γ(n + s + 2)

,∫ 1

0
k n−1+s(1 − k) dk = B(n + s, 2) =

Γ(n + s)Γ(2)
Γ(n + s + 2)

=
1

(n + s)(n + s + 1)
.

Inserting these values into the estimates of I1 and I2 yields inequality (17). The proof is completed.
Inequality (18) follows by a similar argument.

Remark 2.3. Theorem 1.2 follows directly from Theorem 2.2 by taking n = 1.

Remark 2.4. Theorem 2.2 reduces to Theorem 1.3 for s = 1.

Theorem 2.5. Let f : [a, b] → R be n-times differentiable on [a, b]. Assume that | f (n)
|
q is s–convex in the second

sense on [a, b] for some s ∈ (0, 1], where p > 1 and q = p
p−1 . Let 1 : [a, b] → [0, 1] be integrable and set

λ =
∫ b

a 1(t) dt, µ = b − a − λ. Then, the following inequalities hold:∣∣∣∣∣∣∣
∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)∣∣∣∣∣∣∣
≤

B(p + 1, p(n − 1) + 1)1/p

(n − 1)!(s + 1)1/q

×

[
λn+1

(
| f (n)(a)|q + | f (n)(a + λ)|q

)1/q
+ µn+1

(
| f (n)(a + λ)|q + | f (n)(b)|q

)1/q
]
,

(19)

and ∣∣∣∣∣∣∣
∫ b

a
f (t)1(t) dt −

∫ b

b−λ
f (t) dt +

n−1∑
k=1

(
T2

k − I2
k

)∣∣∣∣∣∣∣
≤

B(p + 1, p(n − 1) + 1)1/p

(n − 1)!(s + 1)1/q

×

[
λn+1

(
| f (n)(b)|q + | f (n)(b − λ)|q

)1/q
+ µn+1

(
| f (n)(b − λ)|q + | f (n)(a)|q

)1/q
]
,

(20)
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where

B(p + 1, p(n − 1) + 1) =
p! (p(n − 1))!

(pn + 1)!
.

Proof. Invoking the first identity in Lemma 2.1, we may express

|L| ≤ I1 + I2,

where

I1 =
1

(n − 1)!

∫ a+λ

a
(x − a)(a + λ − x) n−1

| f (n)(x)| dx,

I2 =
1

(n − 1)!

∫ b

a+λ
(b − x)(x − a − λ) n−1

| f (n)(x)| dx.

Employing Hölder’s inequality with conjugate exponents p and q = p
p−1 , we obtain

I1 ≤
1

(n − 1)!

(∫ a+λ

a

[
(x − a)(a + λ − x)n−1

]p
dx

)1/p (∫ a+λ

a
| f (n)(x)|q dx

)1/q

,

I2 ≤
1

(n − 1)!

(∫ b

a+λ

[
(b − x)(x − a − λ)n−1

]p
dx

)1/p (∫ b

a+λ
| f (n)(x)|q dx

)1/q

.

Now, applying the changes of variables

x = a + λt, x = a + λ + µt,

we arrive at ∫ a+λ

a

[
(x − a)(a + λ − x)n−1

]p
dx = λpn+1B(p + 1, p(n − 1) + 1),

∫ b

a+λ

[
(b − x)(x − a − λ)n−1

]p
dx = µpn+1B(p + 1, p(n − 1) + 1),

where

B(p + 1, p(n − 1) + 1) =
p! (p(n − 1))!

(pn + 1)!
.

Next, we use the s–convexity of | f (n)
|
q . For x = a + λt with t ∈ [0, 1], we have

| f (n)(a + λt)|q = | f (n)
(
(1 − t)a + t(a + λ)

)
|
q
≤ (1 − t)s

| f (n)(a)|q + ts
| f (n)(a + λ)|q.

Integrating over t ∈ [0, 1] and using ∫ 1

0
ts dt =

∫ 1

0
(1 − t)s dt =

1
s + 1

,

we obtain ∫ a+λ

a
| f (n)(x)|q dx = λ

∫ 1

0
| f (n)(a + λt)|q dt ≤

λ
s + 1

(
| f (n)(a)|q + | f (n)(a + λ)|q

)
.

Similarly, for x = a + λ + µt with t ∈ [0, 1],

| f (n)(a + λ + µt)|q = | f (n)
(
(1 − t)(a + λ) + tb

)
|
q
≤ (1 − t)s

| f (n)(a + λ)|q + ts
| f (n)(b)|q,
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and hence ∫ b

a+λ
| f (n)(x)|q dx = µ

∫ 1

0
| f (n)(a + λ + µt)|q dt ≤

µ

s + 1

(
| f (n)(a + λ)|q + | f (n)(b)|q

)
.

Therefore,

I1 ≤
1

(n − 1)!
λn+ 1

p B(p + 1, p(n − 1) + 1)1/p
(
λ

s + 1

(
| f (n)(a)|q + | f (n)(a + λ)|q

))1/q

=
λn+1

(n − 1)!
B(p + 1, p(n − 1) + 1)1/p

(s + 1)1/q

(
| f (n)(a)|q + | f (n)(a + λ)|q

)1/q
,

and similarly,

I2 ≤
1

(n − 1)!
µn+ 1

p B(p + 1, p(n − 1) + 1)1/p
( µ

s + 1

(
| f (n)(a + λ)|q + | f (n)(b)|q

))1/q

=
µn+1

(n − 1)!
B(p + 1, p(n − 1) + 1)1/p

(s + 1)1/q

(
| f (n)(a + λ)|q + | f (n)(b)|q

)1/q
.

Combining these estimates with |L| ≤ I1 + I2 yields the desired inequality.
Inequality (20) can be proved by following an analogous argument.

Remark 2.6. Theorem 2.5 reduces to Theorem 1.4 for s = 1.

Theorem 2.7. Let f : [a, b]→ R be n-times differentiable on [a, b]. Assume that | f (n)
|
q is s–convex in the second sense

on [a, b] for some s ∈ (0, 1], where q ≥ 1. Let 1 : [a, b]→ [0, 1] be integrable and set λ =
∫ b

a 1(t) dt, µ = b−a−λ.
Then, the following inequalities hold:∣∣∣∣∣∣∣

∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)∣∣∣∣∣∣∣
≤

1
(n − 1)!

(
1

n(n + 1)

)1− 1
q
{
λn+1

[
| f (n)(a)|q

(n + s)(n + s + 1)
+
Γ(s + 2)(n − 1)!
Γ(n + s + 2)

| f (n)(a + λ)|q
]1/q

+ µn+1

[
Γ(s + 2)(n − 1)!
Γ(n + s + 2)

| f (n)(a + λ)|q +
| f (n)(b)|q

(n + s)(n + s + 1)

]1/q }
,

(21)

and ∣∣∣∣∣∣∣
∫ b

a
f (t)1(t) dt −

∫ b

b−λ
f (t) dt +

n−1∑
k=1

(
T2

k − I2
k

)∣∣∣∣∣∣∣
≤

1
(n − 1)!

(
1

n(n + 1)

)1− 1
q
{
λn+1

[
| f (n)(b)|q

(n + s)(n + s + 1)
+
Γ(s + 2)(n − 1)!
Γ(n + s + 2)

| f (n)(b − λ)|q
]1/q

+ µn+1

[
Γ(s + 2)(n − 1)!
Γ(n + s + 2)

| f (n)(b − λ)|q +
| f (n)(a)|q

(n + s)(n + s + 1)

]1/q }
.

(22)

Proof. From the first identity in Lemma 2.1 we may write

L :=
∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)
= K1

n.

Taking absolute values and using the representation of K1
n together with the triangle inequality, we obtain

|L| ≤ I1 + I2,
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where

I1 :=
1

(n − 1)!

∫ a+λ

a
(x − a)(a + λ − x) n−1

∣∣∣ f (n)(x)
∣∣∣ dx,

I2 :=
1

(n − 1)!

∫ b

a+λ
(b − x)(x − a − λ) n−1

∣∣∣ f (n)(x)
∣∣∣ dx.

We begin with I1. Define

11(x) = (x − a)(a + λ − x) n−1, x ∈ [a, a + λ],

so that

I1 =
1

(n − 1)!

∫ a+λ

a
11(x)

∣∣∣ f (n)(x)
∣∣∣ dx.

By the power–mean inequality, for q ≥ 1,∫ a+λ

a
11(x)

∣∣∣ f (n)(x)
∣∣∣ dx ≤

(∫ a+λ

a
11(x) dx

)1− 1
q
(∫ a+λ

a
11(x)

∣∣∣ f (n)(x)
∣∣∣qdx

)1/q
,

and hence

I1 ≤
1

(n − 1)!

(∫ a+λ

a
11(x) dx

)1− 1
q
(∫ a+λ

a
11(x)

∣∣∣ f (n)(x)
∣∣∣qdx

)1/q
. (23)

A direct calculation with y = x − a gives∫ a+λ

a
11(x) dx =

∫ λ

0
y(λ − y) n−1dy =

λn+1

n(n + 1)
.

Moreover, with the change of variable x = a + λt,we have∫ a+λ

a
11(x)

∣∣∣ f (n)(x)
∣∣∣qdx = λn+1

∫ 1

0
t(1 − t) n−1

∣∣∣ f (n)(a + λt)
∣∣∣qdt.

Now assume that
∣∣∣ f (n)

∣∣∣q is s–convex in the second sense on [a, b]. Then for t ∈ [0, 1],∣∣∣ f (n)(a + λt)
∣∣∣q = ∣∣∣ f (n)

(
(1 − t)a + t(a + λ)

)∣∣∣q ≤ (1 − t)s
∣∣∣ f (n)(a)

∣∣∣q + ts
∣∣∣ f (n)(a + λ)

∣∣∣q.
Substituting this estimate into the above integral yields∫ a+λ

a
11(x)

∣∣∣ f (n)(x)
∣∣∣qdx ≤ λn+1

[∣∣∣ f (n)(a)
∣∣∣q ∫ 1

0
t(1 − t) n−1+s dt

+
∣∣∣ f (n)(a + λ)

∣∣∣q ∫ 1

0
t s+1(1 − t) n−1 dt

]
.

Evaluating these integrals via standard Beta–Gamma identities gives∫ 1

0
t(1 − t) n−1+s dt =

1
(n + s)(n + s + 1)

,

∫ 1

0
t s+1(1 − t) n−1 dt =

Γ(s + 2)(n − 1)!
Γ(n + s + 2)

.

Therefore, ∫ a+λ

a
11(x)

∣∣∣ f (n)(x)
∣∣∣qdx ≤ λn+1


∣∣∣ f (n)(a)

∣∣∣q
(n + s)(n + s + 1)

+
Γ(s + 2)(n − 1)!
Γ(n + s + 2)

∣∣∣ f (n)(a + λ)
∣∣∣q .
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Combining this with (23) and
∫ a+λ

a 11(x) dx = λn+1

n(n+1) , we obtain

I1 ≤
1

(n − 1)!

(
λn+1

n(n + 1)

)1− 1
q
λn+1


∣∣∣ f (n)(a)

∣∣∣q
(n + s)(n + s + 1)

+
Γ(s + 2)(n − 1)!
Γ(n + s + 2)

∣∣∣ f (n)(a + λ)
∣∣∣q


1/q

=
λn+1

(n − 1)!

(
1

n(n + 1)

)1− 1
q


∣∣∣ f (n)(a)
∣∣∣q

(n + s)(n + s + 1)
+
Γ(s + 2)(n − 1)!
Γ(n + s + 2)

∣∣∣ f (n)(a + λ)
∣∣∣q

1/q

.

(24)

We next estimate I2. Let

12(x) = (b − x)(x − a − λ) n−1, x ∈ [a + λ, b],

so that

I2 =
1

(n − 1)!

∫ b

a+λ
12(x)

∣∣∣ f (n)(x)
∣∣∣ dx.

In an analogous manner, by applying the power–mean inequality to I2 and invoking the s-convexity of
| f (n)
|
q, we obtain

I2 ≤
1

(n − 1)!

(
µn+1

n(n + 1)

)1− 1
q
µn+1

Γ(s + 2)(n − 1)!
Γ(n + s + 2)

∣∣∣ f (n)(a + λ)
∣∣∣q + ∣∣∣ f (n)(b)

∣∣∣q
(n + s)(n + s + 1)



1/q

=
µn+1

(n − 1)!

(
1

n(n + 1)

)1− 1
q
Γ(s + 2)(n − 1)!
Γ(n + s + 2)

∣∣∣ f (n)(a + λ)
∣∣∣q + ∣∣∣ f (n)(b)

∣∣∣q
(n + s)(n + s + 1)


1/q

.

(25)

Finally, combining |L| ≤ I1+ I2 with (24) and (25) yields the asserted estimate, and the proof is completed.
Inequality (22) can be proved by following an analogous argument.

Remark 2.8. Theorem 2.7 reduces to Theorem 1.5 for s = 1.

Theorem 2.9. Let f : [a, b] → R be n-times differentiable on [a, b]. Assume that | f (n)
|
q is s–convex in the second

sense on [a, b] for some s ∈ (0, 1], where q > 1 and p = q
q−1 . Let 1 : [a, b] → [0, 1] be integrable and set

λ =
∫ b

a 1(t) dt, µ = b − a − λ. Then, the following inequalities hold:∣∣∣∣∣∣∣
∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)∣∣∣∣∣∣∣
≤

1
(n − 1)!

[
λ pn+1

p
B
(
p + 1, p(n − 1) + 1

)
+

λ
q(s + 1)

(
| f (n)(a)|q + | f (n)(a + λ)|q

)]
+

1
(n − 1)!

[
µ pn+1

p
B
(
p + 1, p(n − 1) + 1

)
+

µ

q(s + 1)

(
| f (n)(a + λ)|q + | f (n)(b)|q

)]
,

(26)

and ∣∣∣∣∣∣∣
∫ b

a
f (t)1(t) dt −

∫ b

b−λ
f (t) dt +

n−1∑
k=1

(
T2

k − I2
k

)∣∣∣∣∣∣∣
≤

1
(n − 1)!

[
λ pn+1

p
B
(
p + 1, p(n − 1) + 1

)
+

λ
q(s + 1)

(
| f (n)(b)|q + | f (n)(b − λ)|q

)]
+

1
(n − 1)!

[
µ pn+1

p
B
(
p + 1, p(n − 1) + 1

)
+

µ

q(s + 1)

(
| f (n)(b − λ)|q + | f (n)(a)|q

)]
,

(27)

where

B
(
p + 1, p(n − 1) + 1

)
=
Γ(p + 1)Γ(p(n − 1) + 1)

Γ(pn + 2)
.
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Proof. Invoking the first equality in Lemma (2.1), we can write

L :=
∫ a+λ

a
f (t) dt −

∫ b

a
f (t)1(t) dt +

n−1∑
k=1

(
I1
k − T1

k

)
= K1

n.

Combining the integral representation of K1
n with the triangle inequality yields

|L| ≤ I1 + I2,

where

I1 :=
1

(n − 1)!

∫ a+λ

a
(x − a)(a + λ − x) n−1

∣∣∣ f (n)(x)
∣∣∣ dx,

I2 :=
1

(n − 1)!

∫ b

a+λ
(b − x)(x − a − λ) n−1

∣∣∣ f (n)(x)
∣∣∣ dx.

Define
A1(x) = (x − a)(a + λ − x) n−1, x ∈ [a, a + λ],

A2(x) = (b − x)(x − a − λ) n−1, x ∈ [a + λ, b].

Let q > 1 and p = q
q−1 . By Young’s inequality,

uv ≤
up

p
+

vq

q
(u, v ≥ 0),

we have, for x in the corresponding intervals,

A1(x)
∣∣∣ f (n)(x)

∣∣∣ ≤ A1(x)p

p
+

∣∣∣ f (n)(x)
∣∣∣q

q
, A2(x)

∣∣∣ f (n)(x)
∣∣∣ ≤ A2(x)p

p
+

∣∣∣ f (n)(x)
∣∣∣q

q
.

Integrating these inequalities over [a, a + λ] and [a + λ, b], respectively, and multiplying by 1
(n−1)! , we obtain

I1 ≤
1

(n − 1)!

[
1
p

∫ a+λ

a
A1(x)pdx +

1
q

∫ a+λ

a

∣∣∣ f (n)(x)
∣∣∣qdx

]
,

I2 ≤
1

(n − 1)!

[
1
p

∫ b

a+λ
A2(x)pdx +

1
q

∫ b

a+λ

∣∣∣ f (n)(x)
∣∣∣qdx

]
.

(28)

We next evaluate the p-power integrals of A1 and A2. Using the change of variable x = a+λt on [a, a+λ],
we find ∫ a+λ

a
A1(x)pdx = λpn+1

∫ 1

0
tp(1 − t)p(n−1)dt = λpn+1B(p + 1, p(n − 1) + 1),

and with x = a + λ + µt on [a + λ, b],we similarly obtain∫ b

a+λ
A2(x)pdx = µpn+1

∫ 1

0
tp(n−1)(1 − t)pdt = µpn+1B(p + 1, p(n − 1) + 1),

where

B(p + 1, p(n − 1) + 1) =
Γ(p + 1)Γ

(
p(n − 1) + 1

)
Γ(pn + 2)

.
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Finally, we estimate the remaining integrals by using the s–convexity of
∣∣∣ f (n)

∣∣∣q. For x = a + λt with
t ∈ [0, 1], ∣∣∣ f (n)(a + λt)

∣∣∣q = ∣∣∣ f (n)
(
(1 − t)a + t(a + λ)

)∣∣∣q ≤ (1 − t)s
∣∣∣ f (n)(a)

∣∣∣q + ts
∣∣∣ f (n)(a + λ)

∣∣∣q.
Integrating over t ∈ [0, 1] and using

∫ 1

0 ts dt =
∫ 1

0 (1 − t)s dt = 1
s+1 , we get∫ a+λ

a

∣∣∣ f (n)(x)
∣∣∣qdx = λ

∫ 1

0

∣∣∣ f (n)(a + λt)
∣∣∣qdt ≤

λ
s + 1

(∣∣∣ f (n)(a)
∣∣∣q + ∣∣∣ f (n)(a + λ)

∣∣∣q).
Likewise, for x = a + λ + µt with t ∈ [0, 1],∣∣∣ f (n)(a + λ + µt)

∣∣∣q = ∣∣∣ f (n)
(
(1 − t)(a + λ) + tb

)∣∣∣q ≤ (1 − t)s
∣∣∣ f (n)(a + λ)

∣∣∣q + ts
∣∣∣ f (n)(b)

∣∣∣q,
and hence ∫ b

a+λ

∣∣∣ f (n)(x)
∣∣∣qdx = µ

∫ 1

0

∣∣∣ f (n)(a + λ + µt)
∣∣∣qdt ≤

µ

s + 1

(∣∣∣ f (n)(a + λ)
∣∣∣q + ∣∣∣ f (n)(b)

∣∣∣q).
Substituting these estimates and the computed Beta integrals into (28), and then combining the resulting

bounds with |L| ≤ I1 + I2, we obtain the desired inequality. This completes the proof.
The proof of inequality (27) is similar and therefore omitted.

Remark 2.10. Theorem 2.9 reduces to Theorem 1.6 for s = 1.

Conclusion

In this study, a systematic framework is developed to derive Steffensen-type integral inequalities under
the assumption that the absolute n-th derivative of the underlying function satisfies s-convexity in the
second sense. By employing a suitable integral representation together with classical analytical tools such
as Hölder, power–mean, and Young inequalities, we derived explicit upper bounds involving only endpoint
values of the derivatives. The obtained results extend a variety of known Steffensen-type inequalities and
recover several earlier results as special cases when s = 1 or n = 1. Moreover, the use of Beta and Gamma
functions enabled us to express the bounds in a compact and unified form. The presented inequalities
contribute to the growing literature on generalized convexity and provide a flexible framework for further
investigations. Possible future work may include analogous results for other generalized convexity classes
or fractional-type integral operators.
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