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Steffensen-Type Integral Inequalities for Functions with s-Convex
Absolute n-th Derivatives
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?Bandirma Onyedi Eyliil University, Graduate School, Balikesir, Tiirkiye
YBandirma Onyedi Eyliil University, Bandirma Vocational School, Balikesir, Tiirkiye

Abstract. In this paper, we establish new Steffensen-type integral inequalities for functions whose absolute
nth derivatives are s-convex in the second sense. By deriving an appropriate integral representation
and employing inequalities such as Holder, power-mean, and Young, we obtain several explicit upper
bounds expressed in terms of endpoint values of the absolute n-th derivative of f. The obtained results
generalize Steffensen-type inequalities to the s-convex framework and provide a unified treatment of
different analytical techniques within this setting.

1. INTRODUCTION

Let I € R be a nonempty interval. For a fixed parameter s € (0,1], a function f : I — R is said to be
s-convex in the second sense if for all x1,x, € I and for all ¢ € [0, 1], the inequality

fltxr + (1= 0)xp) < £°f(x1) + (1 = £)° f(x2) 1)

holds. If the inequality in (1) is reversed, then f is said to be s-concave.
The classical Hermite-Hadamard inequality admits the following generalization for s-convex functions.
If f : I — Ris s-convex in the second sense and f is integrable on [a,b] C I, then

b b b
2*%(%) < blTafa Fx)dx < f—(as)j:{( ), @)

For further insights into s-convex functions and related variants of the Hermite-Hadamard inequality, the
reader is referred to the following references: [2-6, 15].
In 1918, J. E. Steffensen established the celebrated inequality given in [1]

Theorem 1.1. Suppose that f and g are integrable functions defined on (a,b), f is decreasing and for each t €
(a,b),0 < g (t) < 1. Then, the following inequality

b b +A
f(t)dtsf f(t)g(t)dtsf F(Ddt 3)
b-A a a

holds, where A = fﬂb g (t)dt.
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The Steffensen inequality has since become a central topic of investigation, and numerous generalizations
and related developments can be found in [8-14].

In[7], Alomari derived the following Steffensen-type identities by employing an integral representation
introduced in [12].

Theorem 1.2. [7]Let f,g : [a,b] € R* — R be integrable such that 0 < g(t) < 1, for all t € [a,b] such that

fgbg(t) f'(t)dt exists. If f is absolutely continuous on [a,b] such that |f’
s € (0,1) then we have

is s-convex on [a,b], for some fixed

f f(t)dt—fft)g(t)dt @

< m[/\z +(b—ﬂ—

+ si—z[ah(b—a—)\)z]f'(mm

and
b b
dt — d 5
[ roswa- [ sou ®
1
< m[}lz +(b-a-

—2[/\2+(b—a—/\)2]f’(b—/\).

where A := fﬂb g (t)dt.

In [13], Ekinci et al. established the following four results for functions whose absolute value of the nth

b
derivative is convex where A := fu g(t)dt and

(a+/\ x)" 1

n = f 90—y [ dx,

n-1
; f 9) —( o 1’;3 FD(x) i,

n 2
. f fx)dx - f(" V(a),

1

b
d
o= ) fedxs y &

k=1

=
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o)
I

—
N
Il

~
N
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Theorem 1.3. Let f : [a,b] — R be differentiable n times and assume that |f"| is convex on [a,b]. Let g : [a,b] —
[0, 1] be integrable and set A = j; ! g(t) dt. Then the following inequalities hold:

+A b n-1
f f(&)dt - f f(®)g(t)dt + Z (i-11)
a a =1

n/\n+l o n(b —a— )l

SO TGy

(/VH'l +(b—a- /\)n+1)
(n+2)!

TARIO] (6)

£ @+ D).
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and

b b n—1
fu F(Hg(t)dt — fb . f(t)dt+kz_;(T,§—1,§) ?)

(b n+l1

n+1
AT 0y £ a4 )+ ( " 2 1F™(a)|

=+
(A" 4 (b—a - Ay™)

* n+2) ' ®)

Theorem 1.4. Let f : [a,b] — R be n-times differentiable and assume that | f(”)lq is convex on [a,b). Let g : [a,b] —
[0, 1] be integrable and define A = f g(t)dt. Let1 <p < ooand g = Ll Then the following two inequalities hold:

+A b n-1
f f(H)dt - f fDg(t)dt + Z (1 -)
a a k=1

n+1 ! Y 1/p
= —/\1)! 2174 (p ((5,5”+ 1)!)) ) (IF" @ + 1" + A)w)l/" ©)

(b—a—-A)"" (plp(n - 1)
(n—1)!214 ( (pn+1)!

1/p 1/q
) (17 + 1l + 17 o))

and

b n-1
FHg(ydt - f fat+ Y (T2-1)
a k=1

b—a— )" (pl(p(n - 1)1\
= ((n—a 1)!2)1/q (p ((5;5n+ 1)!)) ) (F @ + 17 - Ay " 10)

n+1 ! — 1) 1/p
T - D2 (p ((SzinJr 1)!)) ) (r@ = w17 0r)

Theorem 1.5. Let f : [a,b] — R be n-times differentiable and let g : [a,b] — [0,1] be integrable. Define
A= fa ’ g(t) dt,and assume that | f™|7 is convex on [a, b] for some q > 1. Then the following inequalities hold:

+A b n
f Fo)de - f FOgt) dt +

k=1

-1

/\n+l
(n+1)! [n+2 |f(n)( )|q tio |f”)(“+/\)| ]

b_ _ n+1l

( m +1A>)' @ + | ”)<b>|] (11)

and
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b n—1
d — d T2 _ IZ

(Bg(t) dt fb fware ;

(b_ _ A)m—l . )
(;+l)! [n+2|f( ()|q |f( - /\))]
/\n+1 1/q

T ) [n +2 |F - A)|q nt2 |f(n)(b)|q] (12)

Theorem 1.6. Let f :

[a,b] = R be n-times diﬁ‘erentiable and let g : [a,b] — [0,1] be integrable. Define
A= fgh g(t)dt, u=b-a-Aandletq>1landp = —1 Assume that |f™|7 is convex on [a,b]. Then the
following inequalities hold:

+A b n-1
fﬂfmm—jfmwmw+ (z -

k=1

1 (Te+DT(p(n—1)+1) . i
(n—l)!{ pI(pn +2) (/\p 1 i 1)

+§DwmmW+VWm+mﬁ+uwww+MV+mem§

(13)
and

b b n-1 ) )
fa F(g(H)dt — L . f(t)dt+; (12- )

1 (Tp+DT(p(n-1)+1) . .
(n—l)!{ pT(pn +2) (vt )

(14)

The Gamma and Beta functions will play a fundamental role in the analysis carried out in this work
For x > 0, the Gamma function is defined by

F(x)=f t* et dt,
0

and serves as a continuous extension of the factorial, since I'(n)
Beta function is defined through

+$hﬂﬂmmr+wa-AW)+MVWw—MV+VW@Wﬂ}

(n — 1)! for every positive integer n. The

1
B(a,B) = fo to(1-0Ptdt,  a,p>0,

and is linked to the Gamma function via the classical relation

_ i)
M= Tavp

These special functions arise naturally in the evaluation of several kernel integrals, and they will be used
throughout the sequel to present our results in a clear and compact manner.
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2. MAIN RESULTS

In order to obtain the results of this section, we require the following lemma introduced by Ekinci et al.
[13].

b
Lemma 2.1. Let f, g : [a,b] € R* — R be integrable such that 0 < g(t) < 1 for all t € [a, b] and f g(t)f(k)(t) dt
a

exists fork =1,2,...,n. Then, we have the following identities:
+A b n-1
f fyd - f FOg(t)dt + Z (-1 (15)

+A
- f (f - (t)dt)(‘”()\—ﬂ")(x)dx
b b (@a+A-x)"1 -
_fm (f g(t)dt) RS IR

and
b b n-1 .
[ rowra- [ S0 Y (1) (16)
b—A X b n,
(o)
b n—-1
([ - oea) S
where
b
/\:=f g(t)dt
and

S
I

a+/\ 0" e
n f P I - oD ds,

b-
- [ <>( e
+A n=2 .k
g f f(x)dx—Z%f“‘—”(a),
a k=1 "
b n-1 PRy
2= [ e Y S e
b-2 =1

Throughout the paper, the notations T}, T2, I}, and I2 will be used as defined above.

ol
I

—
i
I

T
Il

Theorem 2.2. Let f : [a,b] — R be n-times differentiable on [a,b]. Assume that |f"| is s—convex in the second
sense on [a, b] for some s € (0,1]. Let g : [a,b] — [0, 1] be integrable and set A = fab g(t)dt,u =b—a— A. Then, the
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following inequalities hold:

+A b n-1
f f(®) df—f f®gt)dt + (111 _Tll)

k=1
Anl . TG+2) (vt N s .
S G rgwrsen @ m(A L) a4+ ) (17)
[Jn+1 "
m-Dn+s)n+s+1) FE @),
and
fb f(tg(t)dt — fb f@)dt + ¥ (T2 —12)
p b = k k
e " T6+2) (et o wet) s o) 8
e TS TE TS LA G v (AR T LA R (18)
n+1
= @)

D+ )nts+1)

Proof. From Lemma 2.1, we have

+A b n-1
L::f f(t)dt—ff(t)g(t)dt+ (1,1—T,1)=K3,,

k=1

where

+A X —a-A n-1

’ b —a — n-1
) fm (f g¢) dt) % £ ) dx.

Since 0 < g(t) < 1, the inner integrals satisfy 0 < fux(l —g(t)dt <x—aand 0 < fxb gt)ydt <b—x.
Hence taking absolute values and using the triangle inequality gives

Ll <L + 1,
where
_ 1f+A 1 — )£ () d
1—m ) (x—a)a+ A —x)""|f"(x)dx,
_ 1 ! n-1y g(n)
b= gy [ ===l

Applying the substitutions

x=ta+A)+((1-1ta, x=kb+ (1 -k)a+A),
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and using the s-convexity of |f")], we obtain

n+1 1
1< G j; HL = 0" (1 = 1@+ £ @ + A)]) dt
n+ 1 1
= (:_ 11)![|f(n)(a)|j(; 1 — t)n—1+s dr + |f(”)(a + A”j; ts+1(1 _ t)n—l dt],
n+1

|| <

1
A [ K- -k RO dk

_ lun+1
(n—-1)!

1 1
[| D (a + M) fo kN1 = k) dk + £ (b)) fo k"1 - k) dk].

Evaluating these integrals using the properties of the Beta and Gamma functions yields

I'(n+s)I(2) 1
Tn+s+2) m+s)n+s+1)
I[(s+2)[(n) T(s+2)(n—1)
In+s+2) Tm+s+2) '
ImI(s+2) T(s+2)(n-1)!
Tn+s+2) Tm+s+2) ’

1 I'(n+s)[(2) 1
n—1+s _ — —
fok =Rk =B1+52) = 5000 = asmrs+ 1)

1
f 1 - dt =B@2,n+s) =
0

1
f 1 - )" 1dt = B(s +2,n) =
0

1
f k"1 - k)" dk = B(n,s +2) =
0

Inserting these values into the estimates of I; and I, yields inequality (17). The proof is completed.
Inequality (18) follows by a similar argument. [J

Remark 2.3. Theorem 1.2 follows directly from Theorem 2.2 by taking n = 1.
Remark 2.4. Theorem 2.2 reduces to Theorem 1.3 for s = 1.

Theorem 2.5. Let f : [a,b] — R be n-times differentiable on [a,b). Assume that |f"™|7 is s—convex in the second

sense on [a,b] for some s € (0,1], where p > 1 and q = pfl. Let g : [a,b] — [0,1] be integrable and set

A= fﬂb g(t)dt,u = b —a— A. Then, the following inequalities hold:

+A b n-1
fw f(t)dt—f fgyde+ Y (I - T)

k=1
<B(p +1,p(n—1)+ )V» (19)
T (m=1DUs+ 1)1/

X[/\”+1(|f(")(ﬂ)|q + |f(”)(a + /\)lq)l/q + Hn+1<|f(n)(a + )T+ |f(n)(b)|q)1/4],

and

b b n-1
fa fg(t)dt - fb foare Y (TE-1)

k=1
Bp+lpm-1)+ 1)p (20)
(n=1)!(s + 1)1/a

A”+1(|f(”)(b)|q + |f(”)(b _ /\)Iq)l/q + #n+1(|f(n)(b -7+ |f(n)(ﬂ)|q)1/ﬂ]/

X
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where
pl(p(n —1))!

B(p + 1,p(7l - 1) + 1) = W

Proof. Invoking the first identity in Lemma 2.1, we may express

Ll <L + 1,
where
I = = 1)|f (x —a)@+ A —x)" 1 f"(x)| dx,
— _ — g — A1y £m)
12_(11—1)! j;m(b x)(x—a—A)"" PV (x)| dx.

Employing Holder’s inequality with conjugate exponents p and g = Ll, we obtain

1 +A 1/p +A 1/q
L < T ( f [ - a)a+A- x)”*l]” dx) ( f LF™ ()7 dx) ,
b 1/p /9
L < ﬁ (f [(b X)(x—a- ) (f |f(”)(x)|‘? dx) .

Now, applying the changes of variables
x=a+ At, x=a+A+ut,

we arrive at

+A
f [ - a)a+A - x)”-l]” dx = A" B(p +1,p(n — 1) + 1),

b
f [(b —x)(x—a- A)”_l]p dx =y Bp +1,p(n — 1) + 1),
a+A
where

pt(p(n — 1)

Bp+1l,pn-1)+1) = (on 1!

Next, we use the s—convexity of | f(”)lq . For x = a+ At with t € [0, 1], we have

F @+ ADIT = [f((1 = Ba+Ha + D) < (1= 71O @F + £+ AP,

1 1 1
ftsdtzf(l—t)sdtz—,
0 0 s+1

f LM ()17 dx = f |f(a + Ab)7 dt < - ( FP@I7 + "+ D7),

Similarly, for x =a + A + ut with f € [0, 1],

Integrating over t € [0, 1] and using

we obtain

0+ A+ ubl? = [F((1 = -+ A) + D)7 < (1= tFIf P+ ) + EFO @),
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and hence , )
f FD ol dx = yf F+ A+ bl dt < = (1 + ) + 1O @)).
a+A 0 s+1

Therefore,

h< e AT B+ Lpn =D+ ) (5 (If”)(a)lq+If‘")(a+A)lq))

/\n+l B 1/ -1 1
- oy P D i+ e )

and similarly,

1 n+ » . /q
% s 0 B+ L= 1)+ ) (17 11+ 10 0))

n+1 B 1, _ 1
- A Bt U e a4 )

Combining these estimates with |L| < I; + I, yields the desired inequality.
Inequality (20) can be proved by following an analogous argument. [

Remark 2.6. Theorem 2.5 reduces to Theorem 1.4 for s = 1.

Theorem 2.7. Let f : [a,b] — R be n-times differentiable on [a, b]. Assume that |f"|7is s—convex in the second sense

on [a, ] for some s € (0,1], whereq > 1. Let g : [a,b] — [0, 1] be integrable and set A = fab g(t)dt, pu=b-a-A
Then, the following inequalities hold:

l’l

(t)dt— f F(Hg(t)dt + (

T

k=1
1 1 F @) T(s+2)(n—1)! 7
= -1y (n(n+1) { [(n+s)(n+s+1) * Twrst2) 10+ (21)
wt [LE+2)n =D, RGN
T 1[ I'n+s+2) |f()(a-’-)t)r“-(n+s)(n+s+1)] }’
and
b b n-1 5 R
- fgd - fh . f(t)dt+;(Tk - )
1 U\ [ FO@0 Te+m -1, '/ 2
S(n—l)!(n(n+1)) {A 1 nm+s)n+s+1) Tm+s+2) i/ (b—/\)w] @)

+ [J"+1

L6+ 20t = D! oy, _ g — U@F ]”q}_

IT'n+s+2) n+s)(n+s+1)

Proof. From the first identity in Lemma 2.1 we may write

n—1
L= f f(t)dt - f f(t)g(t)dt+2 (il -1}) =KL
k=1

Taking absolute values and using the representation of K} together with the triangle inequality, we obtain

|L| < Il + 12/
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where

+A
I := ﬁf (x—a)(a+/\—x)”_1|f(”)(x)(dx,

_ 1 ! n=1| £(m)
L= o, fm(b —x)(c—a =" )| dx.
We begin with I;. Define
g1(0)=(x—a)a+A-0"",  xelaa+i],
so that
L = 1 f " 71(x) | f<">(x)| dx.
(n=-1!J,

By the power-mean inequality, for g > 1,

+A +A
f ()| (x)] dx < ( f 71(%) dx)
1 +A -4

L < m (f gl(x)dx)

7 +A 1/q
( f 71| f<">(x)|"dx) . (23)
a
A direct calculation with y = x — a gives

1+ A 1 An+1
f g1(x)dx = f(; yA-y)'dy = ——

T n(n+1)

1-1

7 a+A 1/q
( f 7 !f(”)(X)qux) ,

and hence

Moreover, with the change of variable x = a + At, we have

+A 1
f 71 [P )|'dx = A1 f K1 = 0" + A)|dt.
a 0
Now assume that | f (")|q is s—convex in the second sense on [a, b]. Then for t € [0, 1],

[f0(@+ A)|" =@ - pa+ta+ D) < Q-7 f@] + £+ ).

Substituting this estimate into the above integral yields

+A 1
f n)| 00 dx < A"H[‘f("’(a))q f K1 — "1 dt
! 0

1
+ |f(")(a+)\)|qf 51— )t dt].
0

Evaluating these integrals via standard Beta-Gamma identities gives

1 _ 1 1 _ T(s +2)(n —1)!
n—1+s _ s+1 _ pn-1 _
fot(l_t) dt_(n+s)(n+s+1)’f0t (L-H""dt = In+s+2) °

Therefore,

|f @)’ T(s +2)(n — 1)!
n+s)(n+s+1) I'n+s+2)

+A
f 71 (0) | 0)|"dx < A

|f™(a+ /\))ql.
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]w
(24)

Combining this with (23) and f (0 dx = ;2 +1)' we obtain

| @+ )

1/q

Il_(n—l)' nn+1) n+s)(n+s+1) I'n+s+2)

1 ( An+l )1_4 [)\”"’1 [ |f(n)(a)"7 " I'(s+2)(n—1)!

1)!|f(")(a + )|

n+s)(n+s+1) Tn+s+2)

A 1 V[ ™) T(s +2)(n —
= (n—l)!(n(n+1)) *

We next estimate I,. Let
p@=0-a-a-1)"",  xela+ab],
so that

1 b ’
L= oD fm 72(2) | £ (x)| dx.

In an analogous manner, by applying the power-mean inequality to I, and invoking the s-convexity of
|f M9, we obtain

_1 1/4
I e N \ A
< (n—l)!(n(n+1)) [/J 1 F(n+s+2) |f @ +A)| (m+s)(n+s+1)
1 q 1/q (25)
~ pl 1 =3 I'(s+2)(n— | (g4 1 |q |f(n)(b)|
TS Trs+2) 1 @I Ggmes+)

Finally, combining |L| < I; + 1, with (24) and (25) yields the asserted estimate, and the proof is completed.
Inequality (22) can be proved by following an analogous argument. []

Remark 2.8. Theorem 2.7 reduces to Theorem 1.5 for s = 1.

Theorem 2.9. Let f : [a,b] — R be n-times differentiable on [a,b]. Assume that | f(”)lq is s—convex in the second
sense on [a,b] for some s € (0,1], where g > 1 and p = q%l Let g : [a,b] — [0,1] be integrable and set

A= fa ! g(t)dt, = b —a — A. Then, the following inequalities hold:

1+ b n—
[ soa- [ oo

1

k=1
1 [am A ) )
= W[T Bp + Lpn =) +1) + =5 (F7@F + 17 + M) (26)
1 pn+1
t s 1),[” S Bp+Lp-D+1)+ ﬁ(m’“w A+ If(”)(b)l")],
and 1
b b n—
[ o= [ o
a - k=1
1 [am A ) )
: W[T B(p+1,p(n=1) + 1)+ = (I OF + If 6 - 1)) (27)
1 pn+1
+ =D ['u B(p +1,p(n—-1)+ 1) P 1)<|f(”)(b A + |f(”)(a)|q)]
where

I'p+DI'(p(n-1)+1)
I'(pn +2)

Bp+1,p(n-1)+1)=
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Proof. Invoking the first equality in Lemma (2.1), we can write
+A b n-1
L:= f f(t)dt — f fthgtydt+ Y (It - T}) = K.
” a k=1

Combining the integral representation of K} with the triangle inequality yields

|L| < Il + 12/
where
L= — 1 f+/‘(x — @)@+ A — 0" [P0 dx
YT -1, ’
1 b
I = b—x)(x —a—A)" ()| dx.
= oty [ 0= a= )|
Define
Ai(x)=(x—a)a+A-x)"",  xelaa+A],
A(x)=(b-x)x—a-N)""1,  xela+A,bl
Letg>1landp = q% By Young’s inequality,
p q
uvs%+v— (u,v >0),

we have, for x in the corresponding intervals,

Ay | O
p q

Ay |0

A(0)|f" ()| < ; p

;AW\ @)| <

Integrating these inequalities over [a,4 + A] and [a + A, b], respectively, and multiplying by ﬁ, we obtain

L<—t |1 f " aordx s L f " £ )"
1_(7’1—1)! P Ja ! q Ja ’

L < 1 [1 fb Ap(x)Pdx + 1 fb )f(”)(x)rdx].
a (1’1—1)‘ P Jat+a q Ja+r

We next evaluate the p-power integrals of A; and A,. Using the change of variable x = a+Aton [a,a+A],
we find

(28)

+A 1
f A (x)Pdx = AP f (1 -ty Vdt = A" B + 1, p(n - 1) + 1),
a 0

and withx =a + A + ut on [a + A, b], we similarly obtain

b 1
f Ax(x)Pdx = p"*! f 0D — t)Pdt = " Bp + 1,p(n — 1) + 1),
a+A 0

where

T(p + 1) T(p(n—1) +1)

Bp+1l,pn-1)+1) = Ton+2)
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Finally, we estimate the remaining integrals by using the s—convexity of | f(”)|q. For x = a + At with
te]0,1],
[f0(@+ A)[" = [f(A = a+ta + D) < Q-7 f@] + £+ ).

Integrating over f € [0, 1] and using fo tdt = fo (1-tydt= we get

s+1’

f |F (x)|"dx = f [f" (@ + At)|'at < (| 0@ + ]+ D).
Likewise, for x =a+ A + ut with t € [0,1],
[f@+ A+ ph|" = |1 = @+ )+ )" < (1= 15| fa+ V)] + £ f0),

and hence

f |fO)|"dx = p f |f® @+ A+ pp)|'at ] () fO@+ 1|+ fOm)]).
a+

Substituting these estimates and the computed Beta mtegrals into (28), and then combining the resulting
bounds with |L| < I; + I, we obtain the desired inequality. This completes the proof.

The proof of inequality (27) is similar and therefore omitted. [

Remark 2.10. Theorem 2.9 reduces to Theorem 1.6 for s = 1.

Conclusion

In this study, a systematic framework is developed to derive Steffensen-type integral inequalities under
the assumption that the absolute n-th derivative of the underlying function satisfies s-convexity in the
second sense. By employing a suitable integral representation together with classical analytical tools such
as Holder, power-mean, and Young inequalities, we derived explicit upper bounds involving only endpoint
values of the derivatives. The obtained results extend a variety of known Steffensen-type inequalities and
recover several earlier results as special cases when s = 1 or n = 1. Moreover, the use of Beta and Gamma
functions enabled us to express the bounds in a compact and unified form. The presented inequalities
contribute to the growing literature on generalized convexity and provide a flexible framework for further
investigations. Possible future work may include analogous results for other generalized convexity classes
or fractional-type integral operators.
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