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Abstract. In the paper, the new multiplier transformations Jδ
p (κ, λ, µ, l)

(
0 < κ ≤ 1, δ, l ≥ 0, λ ≥ µ ≥ 0;

p ∈N
)

of multivalent functions is defined. Making use of the operator Bδp,κ
(
λ, µ, l

)
two new subclasses

P
δ
κ,λ,µ,l(A,B; σ, p) and P̃δ

κ,λ,µ,l(A,B; σ, p) of multivalent analytic functions are introduced and investigated in
the open unit disk. Some interesting relations and characteristics such as neighborhoods, partial sums
and quasi-convolution properties of functions belonging to each of these subclasses Pδ

κ,λ,µ,l(A,B; σ, p) and

P̃
δ
λ,µ,l(A,B; σ, p) are investigated.

1. INTRODUCTION AND DEFINITIONS

LetA(n, p) denote the class of functions normalized by

f (z) = zp +

∞∑
k=n+p

akzk (
p,n ∈N := {1, 2, 3, ...}

)
(1)

which are analytic and p − valent in the open unit diskU = {z : z ∈ C and |z| < 1}.
Let f (z) and 1(z) be analytic in U. Then, we say that the function f is subordinate to 1 if there exists a

Schwarz function w(z), analytic in U with w(0) = 0, |w(z)| < 1 such that f (z) = 1(w(z)) (z ∈ U). We denote
this subordination f ≺ 1 or f (z) ≺ 1(z) (z ∈ U). In particular, if the function 1 is univalent inU, the above
subordination is equivalent to f (0) = 1(0), f (U) ⊂ 1(U).

For f ∈ A(n, p) given by (1) and 1(z) given by:

1(z) = zp +

∞∑
k=n+p

bkzk (
p,n ∈N := {1, 2, 3, ...}

)
their convolution (or Hadamard product), denoted by ( f ∗ 1), is defined as

( f ∗ 1)(z) := zp +

∞∑
k=n+p

akbkzk =: (1 ∗ f )(z) (z ∈ U) .
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C. Özer, S. Kazımoğlu / TJOS 10 (1), 10–21 11

Note that f ∗ 1 ∈ A(n, p). In particular, we set

A(p, 1) := Ap, A(1,n) := A(n), A(1, 1) := A1 = A.

For a function f in A(n, p), Deniz and Orhan [1] defined the multiplier transformations Jδ
p (λ, µ, l) as

follows:

Definition 1.1. [1] Let f ∈ A(n, p). For the parameters δ, λ, µ, l ∈ R, λ ≥ µ ≥ 0 and δ, l ≥ 0 define the multiplier
transformations Jδ

p (λ, µ, l) onA(n, p) by the following

J
0
p (λ, µ, l) f (z) = f (z)

(p + l)J1
p (λ, µ, l) f (z) = λµz2 f ′′(z) +

(
λ − µ + (1 − p)λµ

)
z f ′(z) +

(
p(1 − λ + µ) + l

)
f (z)

(p + l)J2
p (λ, µ, l) f (z) = λµz2[J1

p (λ, µ, l) f (z)]′′ +
(
λ − µ + (1 − p)λµ

)
z[J1

p (λ, µ, l) f (z)]′

+
(
p(1 − λ + µ) + l

)
J

1
p (λ, µ, l) f (z)

J
δ1
p (λ, µ, l)(Jδ2

p (λ, µ, l) f (z)) = Jδ2
p (λ, µ, l)(Jδ1

p (λ, µ, l) f (z))

for z ∈ U and p,n ∈N := {1, 2, ...}.
If f is given by (1) then from the definition of the multiplier transformations Jδ

p (λ, µ, l), we can easily see that

J
δ
p (λ, µ, l) f (z) = zp +

∞∑
k=n+p

[
(k − p)(λµk + λ − µ) + p + l

p + l

]δ
akzk.

Probability distributions are applied in a wide range of scientific areas, such as neural networks, eco-
nomic forecasting, radiationless sources, andmeteorology, and are used to describe several real-life phe-
nomena. Inmathematics, the concept is extensively used to study singular structures of Laplacian eigen-
functions, derivatives of distributions, orthogonal polynomials, transmission eigenfunctions, and impulse
functions (see, for example, [2–6]).

The Borel distribution (BD) was introduced by Wanas et al. [7] as

P
(
X = µ

)
=

(
µκ

)µ−1 e−µκ

µ!
, 0 < κ ≤ 1, µ = 1, 2, 3, . . . .

Furthermore, they introduced the series

Mκ (z) = zp +

∞∑
k=n+p

[
κ(k − p)

]k−p−1 e−κ(k−p)(
k − p

)
!

zk, 0 < κ ≤ 1, p ∈N,

whose coefficients are probabilities of the BD.
The research on inclusion relations of analytic functions in certain special sets is a subject that has its

origin at the beginning of the study of geometric function theory. Ruscheweyh in [8] studied neighborhood
and inclusion relations of univalent functions. Srivastava et al. [9] investigated the inclusion properties of
multivalent functions. The authors in [10] derived inclusion symmetric relations for (q, d)-neighborhoods
of analytic univalent functions. For further results, please see [11–13] and works cited therein. Recently,
various subclasses of univalent functions in geometric function theory have been investigated (for details,
see [10, 14–17]).

Let us consider the linear operator Bκ f (z) : A(n, p)→A(n, p) as

Bκ f (z) =Mκ (z) ∗ f (z) = zp +

∞∑
k=n+p

[
κ(k − p)

]k−p−1 e−κ(k−p)(
k − p

)
!

akzk, 0 < κ ≤ 1, p ∈N.
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For δ ≥ 0, we define the operator Bδp,κ
(
λ, µ, l

)
f (z) := Jδ

p (λ, µ, l)Bκ f (z) : A(n, p)→A(n, p) as

Bκ f (z) := B0
p,κ

(
λ, µ, l

)
f (z) = zp +

∞∑
k=n+p

[
κ(k − p)

]k−p−1 e−κ(k−p)(
k − p

)
!

akzk,

(p + l)B1
p,κ

(
λ, µ, l

)
f (z) = λµz2

(
B

0
p,κ

(
λ, µ, l

)
f (z)

)′′
+

(
λ − µ + (1 − p)λµ

)
z
(
B

0
p,κ

(
λ, µ, l

)
f (z)

)′
(2)

+
(
p(1 − λ + µ) + l

)
B

0
p,κ

(
λ, µ, l

)
f (z)

(p + l)B2
p,κ

(
λ, µ, l

)
f (z) = λµz2

(
B

1
p,κ

(
λ, µ, l

)
f (z)

)′′
+

(
λ − µ + (1 − p)λµ

)
z
(
B

1
p,κ

(
λ, µ, l

)
f (z)

)′
+

(
p(1 − λ + µ) + l

)
B

1
p,κ

(
λ, µ, l

)
f (z)

B
δ1
p,κ

(
λ, µ, l

) (
B
δ2
p,κ

(
λ, µ, l

)
f (z)

)
= Bδ2

p,κ
(
λ, µ, l

) (
B
δ1
p,κ

(
λ, µ, l

)
f (z)

)
for z ∈ U and p,n ∈N := {1, 2, ...}.

If f is given by (1) then from the definition of the multiplier transformations Bδp,κ
(
λ, µ, l

)
f (z) , we can

easily see that

B
δ
p,κ

(
λ, µ, l

)
f (z) = zp +

∞∑
k=n+p

Φk
p,κ(δ, λ, µ, l)akzk,

where

Φk
p,κ(δ, λ, µ, l) =

[
κ(k − p)

]k−p−1 e−κ(k−p)(
k − p

)
!

[
(k − p)(λµk + λ − µ) + p + l

p + l

]δ
. (3)

Now, by making use of the operator Bδp,κ
(
λ, µ, l

)
f (z) , we define a new subclass of functions belonging

to the classA(n, p).

Definition 1.2. 0 < κ ≤ 1, λ ≥ µ ≥ 0; l, δ ≥ 0; p ∈N and for the parameters σ, A and B such that

−1 ≤ A < B ≤ 1, 0 < B ≤ 1 and 0 ≤ σ < p,

we say that a function f (z) ∈ A(n, p) is in the class Pδ
κ,λ,µ,l(A,B; σ, p) if it satisfies the following subordination

condition:
1

p − σ


[
B
δ
p,κ

(
λ, µ, l

)
f (z)

]′
zp−1 − σ

 ≺ 1 + Az
1 + Bz

(z ∈ U). (4)

If the following inequality holds true,∣∣∣∣∣∣∣∣
[Bδp,κ(λ,µ,l) f (z)]′

zp−1 − p

B [Bδp,κ(λ,µ,l) f (z)]′
zp−1 − [pB + (A − B)(p − σ)]

∣∣∣∣∣∣∣∣ < 1 (z ∈ U) (5)

the inequality (5) is equivalent the subordination condition (4).

Furthermore, we say that a function f (z) ∈ Pδ
κ,λ,µ,l(A,B; σ, p) is in the subclass P̃δ

κ,λ,µ,l(A,B; σ, p) if f (z) is
of the following form:

f (z) = zp
−

∞∑
k=n+p

|ak| zk (
p,n ∈N := {1, 2, 3, ...}

)
. (6)

The main object of the present paper is to investigate the various important properties and characteristics
of two subclasses ofA(n, p) of normalized analytic functions inU with negative and positive coefficients,
which are introduced here by making use of the multiplier transformations Jκ,δ

p (λ, µ, l) defined by (2).
Several properties involving generalized neighborhoods and partial sums for functions belonging to the
class Pδ

κ,λ,µ,l(A,B; σ, p) are investigated. Furthermore, we derive many results for the Quasi-convolution of

functions belonging to the class P̃δ
κ,λ,µ,l(A,B; σ, p).
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2. BASIC PROPERTIES OF THE FUNCTION CLASS P̃δ
κ,λ,µ,l

(
A,B; σ, p

)
We first determine a necessary and sufficient condition for a function f (z) ∈ A(n, p) of the form (6) to be

in the class P̃δ
κ,λ,µ,l(A,B; σ, p).

Theorem 2.1. Let the function f (z) ∈ A(n, p) be defined by (6). Then, the function f (z) is in the class P̃δ
κ,λ,µ,l(A,B; σ, p)

if and only if
∞∑

k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l) |ak| ≤ (B − A)(p − σ), (7)

where Φk
p,κ(δ, λ, µ, l) is given by (3).

Proof. If the condition (7) hold true, we find from (6) and (7) that∣∣∣∣[Bδp,κ (λ, µ, l) f (z)
]′
− pzp−1

∣∣∣∣ − ∣∣∣∣B [
B
δ
p,κ

(
λ, µ, l

)
f (z)

]′
− zp−1 [

pB + (A − B)(p − σ)
]∣∣∣∣

=

∣∣∣∣∣∣∣∣−
∞∑

k=n+p

kΦk
p,κ(δ, λ, µ, l) |ak| zk−1

∣∣∣∣∣∣∣∣ −
∣∣∣∣∣∣∣∣(B − A)(p − σ)zp−1

− B
∞∑

k=n+p

kΦk
p,κ(δ, λ, µ, l) |ak| zk−1

∣∣∣∣∣∣∣∣
≤

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l) |ak| − (B − A)(p − σ) ≤ 0 (z ∈ ∂U = {z : z ∈ C and |z| = 1}) .

Hence, by the Maximum Modulus Theorem, we have

f (z) ∈ P̃δκ,λ,µ,l(A,B; σ, p).

Conversely, assume that the function f (z) defined by (6) is in the class P̃δ
κ,λ,µ,l(A,B; σ, p). Then, we have∣∣∣∣∣∣∣∣

[Bδp,κ(λ,µ,l) f (z)]′
zp−1 − p

B [Bδp,κ(λ,µ,l) f (z)]′
zp−1 − [pB + (A − B)(p − σ)]

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

∑
∞

k=n+p kΦk
p,κ(δ, λ, µ, l) |ak| zk−p

(B − A)(p − σ)zp−1 − B
∑
∞

k=n+p kΦk
p,κ(δ, λ, µ, l) |ak| zk−p

∣∣∣∣∣∣∣ < 1,

where z ∈ U. Now, since
∣∣∣ℜ(z)

∣∣∣ ≤ |z| for all z, we have

ℜ


∑
∞

k=n+p kΦk
p,κ(δ, λ, µ, l) |ak| zk−p

(B − A)(p − σ)zp−1 − B
∑
∞

k=n+p kΦk
p,κ(δ, λ, µ, l) |ak| zk−p

 < 1. (8)

We choose values of z on the real axis so that the following expression:[
B
δ
p,κ

(
λ, µ, l

)
f (z)

]′
zp−1

is real. Then, upon clearing the denominator in (8) and letting z → 1− though real values, we get the
following inequality

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l) |ak| ≤ (B − A)(p − σ).

This completes the proof of Theorem 2.1.

Remark 2.2. Since P̃δ
κ,λ,µ,l(A,B; σ, p) is contained in the function class Pδ

κ,λ,µ,l(A,B; σ, p), a sufficient condition for
f (z) defined by (1) to be in the class Pδ

κ,λ,µ,l(A,B; σ, p) is that it satisfies the condition (7) of Theorem 2.1.
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Corollary 2.3. Let the function f (z) ∈ A(n, p) be defined by (6). If the function f (z) ∈ P̃δ
κ,λ,µ,l(A,B; σ, p), then

|ak| ≤
(B − A)(p − σ)

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(
k, p ∈N

)
.

The result is sharp for the function f (z) given by:

f (z) = zp
−

(B − A)(p − σ)

k(1 + B)Φk
p,κ(δ, λ, µ, l)

zk (
k, p ∈N

)
.

We next prove the following growth and distortion properties for the class P̃δ
κ,λ,µ,l(A,B; σ, p).

Theorem 2.4. If a function f (z) be defined by (6) is in the class P̃δ
κ,λ,µ,l(A,B; σ, p), then p!

(p − q)!
−

(B − A)(p − σ)(n + p − 1)!

(1 + B)Φn+p
p,κ (δ, λ, µ, l)(n + p − q)!

|z|n
 |z|p−q (9)

≤

∣∣∣ f (q)(z)
∣∣∣ ≤  p!

(p − q)!
+

(B − A)(p − σ)(n + p − 1)!

(1 + B)Φn+p
p,κ (δ, λ, µ, l)(n + p − q)!

|z|n
 |z|p−q

for q ∈N0, p > q and all z ∈ U. The result is sharp for the function f (z) given by:

f (z) = zp
−

(B − A)(p − σ)

(n + p)(1 + B)Φn+p
p (δ, λ, µ, l)

zn+p (
p ∈N

)
. (10)

Proof. In view of Theorem 2.1, we have

(n + p)(1 + B)Φn+p
p,κ (δ, λ, µ, l)

(B − A)(p − σ)(n + p)!

∞∑
k=n+p

k! |ak| ≤

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − σ)
|ak| ≤ 1,

which readily yields
∞∑

k=n+p

k! |ak| ≤
(B − A)(p − σ)(n + p − 1)!

(1 + B)Φn+p
p,κ (δ, λ, µ, l)

(
k, p ∈N

)
. (11)

Now, by differentiating both sides of (6) q−times with respect to z, we obtain

f (q)(z) =
p!

(p − q)!
zp−q
−

∞∑
k=n+p

k!
(k − q)!

akzk−q (
q ∈N0; p > q

)
. (12)

Theorem 2.4 follows readily from (11) and (12).
Finally, it is easy to see that the bounds in (9) are attained for the function f (z) given by (10).

3. INCLUSION RELATIONS INVOLVING NEIGHBORHOODS

We follow earlier investigations (based upon the familiar concept of neighborhoods of analytic functions)
by Goodman [18], Ruscheweyh [8] and others including Srivastava et al. [9, 19], Orhan [20, 21], Deniz and
Orhan [22], and Aouf et al. [23] (see also [24]).

Firstly, we define the (n, η)−neighborhood of function f (z) ∈ A(n, p) of the form (1) by means of Definition
3.1 below.
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Definition 3.1. For η > 0 and a non-negative sequence S = {sk}
∞

k=1, where

sk :=
k(1 + B)Φk

p,κ(δ, λ, µ, l)

(B − A)(p − σ)
(k ∈N).

The (n, η)−neighborhood of a function f (z) ∈ A(n, p) of the form (1) is defined as follows:

N
η
n,p( f ) :=

1 : 1(z) = zp +

∞∑
k=n+p

bkzk
∈ A(n, p) and

∞∑
k=n+p

sk |bk − ak| ≤ η (η > 0)

 . (13)

For sk = k, Definition 3.1 would correspond to theNη−neighborhood considered by Ruscheweyh [8].
Our first result based upon the familiar concept of neighborhood defined by (13).

Theorem 3.2. Let f (z) ∈ Pδ
κ,λ,µ,l(A,B; σ, p) be given by (1). If f satisfies the inclusion condition:(

f (z) + εzp) (1 + ε)−1
∈ P

δ
κ,λ,µ,l(A,B; σ, p)

(
ε ∈ C; |ε| < η; η > 0

)
, (14)

then
N
η
n,p( f ) ⊂ Pδκ,λ,µ,l(A,B; σ, p).

Proof. It is not difficult to see that a function f belongs to Pδ
κ,λ,µ,l(A,B; σ, p) if and only if[

J
δ
p (κ, λ, µ, l) f (z)

]′
− pzp−1

B
[
J
δ
p (κ, λ, µ, l) f (z)

]′
− zp−1 [

pB + (A − B)(p − σ)
] , τ (z ∈ U; τ ∈ C, |τ| = 1) ,

which is equivalent to
( f ∗ h)(z)⧸zp , 0 (z ∈ U), (15)

where for convenience,

h(z) := zp +

∞∑
k=n+p

ckzk = zp +

∞∑
k=n+p

k(1 + τB)Φk
p,κ(δ, λ, µ, l)

τ(B − A)(p − σ)
zk. (16)

We easily find from (16) that

|ck| ≤

∣∣∣∣∣∣∣k(1 + τB)Φk
p,κ(δ, λ, µ, l)

τ(B − A)(p − σ)

∣∣∣∣∣∣∣ ≤ k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − σ)
(k ∈N).

Furthermore, under the hypotheses of theorem, (14) and (15) yield the inequality(
( f (z) + εzp)(1 + ε)−1

)
∗ h(z)

zp , 0 (z ∈ U)

or
f (z) ∗ h(z)

zp , ε (z ∈ U),

which is equivalent to
f (z) ∗ h(z)

zp ≥ η (z ∈ U; η > 0).

Now, if we let

1(z) := zp +

∞∑
k=n+p

bkzk
∈ N

η
n,p( f ),
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then we have ∣∣∣∣∣∣
(

f (z) − 1(z)
)
∗ h(z)

zp

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
∞∑

k=n+p

(ak − bk)ckzk−p

∣∣∣∣∣∣∣∣
≤

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − σ)
|ak − bk| |z|k−p < η (z ∈ U; η > 0).

Thus, for any complex number τ such that |τ| = 1, we have

(1 ∗ h)(z)⧸zp , 0 (z ∈ U),

which implies that 1 ∈ Pδ
κ,λ,µ,l(A,B; σ, p). The proof is complete.

We now define the (n, η)−neighborhood of a function f (z) ∈ A(n, p) of the form (6) as follows.

Definition 3.3. For η > 0, the (n, η)− neighborhood of a function f (z) ∈ A(n, p) of the form (6) is given by

Ñ
η
n,p( f ):=

1 : 1(z) = zp
−

∞∑
k=n+p

bkzk
∈ A(n, p) and

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − σ)
||bk| − |ak|| ≤ η (η > 0)

 . (17)

Next, we prove Theorem 3.4.

Theorem 3.4. If the function f (z) defined by (6) is in the class P̃δ+1
κ,λ,µ,l(A,B; σ, p), then

Ñ
η
n,p( f ) ⊂ P̃δκ,λ,µ,l(A,B; σ, p)

where

η :=
n[λµ(n + p) + λ − µ]

n[λµ(n + p) + λ − µ] + p + l
.

The result is the best possible in the sense that η cannot be increased.

Proof. For a function f (z) ∈ P̃δ+1
κ,λ,µ,l(A,B; σ, p) of the form (6) Theorem 2.1 immediately yields

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − σ)
|ak| ≤

p + l
n[λµ(n + p) + λ − µ] + p + l

. (18)

Similarly, by taking

1(z) := zp
−

∞∑
k=n+p

|bk| zk
∈ Ñ

η
n,p( f )

(
η =

n[λµ(n + p) + λ − µ]
n[λµ(n + p) + λ − µ] + p + l

)
,

we find from the definition (17) that
∞∑

k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − σ)
||bk| − |ak|| ≤ η (η > 0). (19)

With the help of (18) and (19), we have
∞∑

k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − σ)
|bk| ≤

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − σ)
|ak|

+

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − σ)
||bk| − |ak||

≤
p + l

n[λµ(n + p) + λ − µ] + p + l
+ η = 1.
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Hence, in view of the Theorem 2.1 again, we see that 1(z) ∈ P̃δ+1
κ,λ,µ,l(A,B; σ, p).

To show the sharpness of the assertion of Theorem 3.4, we consider the functions f (z) and 1(z) given by

f (z) = zp
−

 (B − A)(p − σ)

(n + p)(1 + B)Φn+p
p,κ (δ + 1, λ, µ, l)

 zn+p
∈ P̃

δ+1
κ,λ,µ,l(A,B; σ, p)

and

1(z) = zp
−

 (B − A)(p − σ)

(n + p)(1 + B)Φn+p
p,κ (δ + 1, λ, µ, l)

+
(B − A)(p − σ)

(n + p)(1 + B)Φn+p
p,κ (δ, λ, µ, l)

η∗
 zn+p

where η∗ > η. Clearly, the function 1(z) belong to Ñη∗

n,p( f ).On the other hand, we find from Theorem 2.1 that

1(z) < P̃δ
κ,λ,µ,l(A,B; σ, p). This evidently completes the proof of Theorem 3.4.

4. PARTIAL SUMS OF THE FUNCTION CLASS P̃δ
κ,λ,µ,l

(
A,B; σ, p

)
Following the earlier work by Silverman [25] and recently Liu [26] and Deniz and Orhan [22], in this

section we investigate the ratio of real parts of functions involving (6) and its sequence of partial sums
defined by

ψm(z) =
{

zp, m = 1, 2, ...,n + p − 1;
zp
−

∑m
k=n+p |ak| zk, m = n + p,n + p + 1, .... (k ≥ n + p; n, p ∈N) (20)

and determine sharp lower bounds forℜ
{
f (z)⧸ψm(z)

}
andℜ

{
ψm(z)⧸ f (z)

}
.

Theorem 4.1. Let f ∈ A(n, p) and ψm(z) be given by (6) and (20), respectively. Suppose also that

∞∑
k=n+p

θk |ak| ≤ 1

where θk =
k(1 + B)Φk

p,κ(δ, λ, µ, l)

(B − A)(p − σ)

 . (21)

Then for m ≥ k + p, we have

ℜ

(
f (z)
ψm(z)

)
> 1 −

1
θm+1

(22)

and

ℜ

(
ψm(z)

f (z)

)
>

θm+1

1 + θm+1
. (23)

The results are sharp for every m with the extremal functions given by:

f (z) = zp
−

1
θm+1

zm+1. (24)

Proof. From the hypothesis of the theorem 4.1, we see that

θk+1 > θk > 1 (k ≥ n + p).

Therefore, we have
m∑

k=n+p

|ak| + θm+1

∞∑
k=m+1

|ak| ≤

∞∑
k=n+p

θk |ak| ≤ 1 (25)

using hypothesis (21) again.
We set

ω(z) = θm+1

[
f (z)
ψm(z)

−

(
1 −

1
θm+1

)]
=1 −

θm+1
∑
∞

k=m+1 |ak| zk−p

1 −
∑m

k=n+p |ak| zk−p
. (26)
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By applying (25) and (26), we find that∣∣∣∣∣ω(z) − 1
ω(z) + 1

∣∣∣∣∣ =
∣∣∣∣∣∣∣ −θm+1

∑
∞

k=m+1 |ak| zk−p

2 − 2
∑m

k=n+p |ak| zk−p − θm+1
∑
∞

k=m+1 |ak| zk−p

∣∣∣∣∣∣∣
≤

θm+1
∑
∞

k=m+1 |ak|

2 − 2
∑m

k=n+p |ak| zk−p − θm+1
∑
∞

k=m+1 |ak|
≤ 1 (z ∈ U; k ≥ n + p),

which shows thatℜ (ω(z)) > 0 (z ∈ U). From (26), we immediately obtain the inequality (22).
To confirm that the function f given by (24) gives a sharp result, we observe for z→ 1− that

f (z)
ψm(z)

= 1 −
1

θm+1
zm−p+1

→ 1 −
1

θm+1
,

which shows that the bound in (22) is the best possible. Similarly, if we set

ϕ(z) = (1 + θm+1)
[
ψm(z)

f (z)
−

θm+1

1 + θm+1

]
=1 +

(1 + θm+1)
∑
∞

k=m+1 |ak| zk−p

1 −
∑m

k=n+p |ak| zk−p
,

and make use of (25), we can deduce that∣∣∣∣∣∣ϕ(z) − 1
ϕ(z) + 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣ (1 + θm+1)

∑
∞

k=m+1 |ak| zk−p

2 − 2
∑m

k=n+p |ak| zk−p + (θm+1 − 1)
∑
∞

k=m+1 |ak| zk−p

∣∣∣∣∣∣∣
≤

(1 + θm+1)
∑
∞

k=m+1 |ak|

2 − 2
∑m

k=n+p |ak| zk−p − (θm+1 − 1)
∑
∞

k=m+1 |ak|
≤ 1 (z ∈ U; k ≥ n + p),

which leads us immediately to assertion (23) of the theorem.
The bound in (23) is sharp with the extremal function given by (24). The proof of theorem is thus

complete.

5. PROPERTIES ASSOCIATED WITH QUASI-CONVOLUTION

In this part, we present results concerning the Quasi-convolution of a function that is in the class
P̃
δ
κ,λ,µ,l(A,B; σ, p).

For the functions f j(z) ∈ A(n, p) given by:

f j(z) = zp
−

∞∑
k=n+p

∣∣∣ak, j

∣∣∣ zk
(
j = 1,m, p ∈N

)
,

we denote by ( f1 • f2)(z) the Quasi-convolution of functions f1(z) and f2(z), that is,

( f1 • f2)(z) = zp
−

∞∑
k=n+p

∣∣∣ak,1

∣∣∣ ∣∣∣ak,2

∣∣∣ zk.

Theorem 5.1. If f j(z) ∈ P̃δ
κ,λ,µ,l(A,B; σ j, p) ( j = 1,m), then

( f1 • f2 • ... • fm)(z) ∈ P̃δκ,λ,µ,l(A,B;Υ, p),

where

Υ := p −

∏m
j=1(B − A)(p − σ j)

(B − A)[(n + p)(1 + B)Φn+p
p,κ (δ, λ, µ, l)]m−1

. (27)
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The result is sharp for the functions f j(z) given by:

f j(z) = zp
−

(B − A)(p − σ j)

(n + p)(1 + B)Φn+p
p,κ (δ, λ, µ, l)

zp+n ( j = 1,m). (28)

Proof. For m = 1, we see that Υ = σ1. For m = 2, Theorem 2.1 gives

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − σ j)

∣∣∣ak, j

∣∣∣ ≤ 1 ( j = 1, 2).

Therefore, by the Cauchy-Schwarz inequality, we obtain

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)√∏2

j=1(B − A)(p − σ j)

√∣∣∣ak,1

∣∣∣ ∣∣∣ak,2

∣∣∣ ≤ 1. (29)

To prove the case when m = 2, we have to find the largest Υ such that

∞∑
k=n+p

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − Υ)

∣∣∣ak,1

∣∣∣ ∣∣∣ak,2

∣∣∣ ≤ 1,

or such that ∣∣∣ak,1

∣∣∣ ∣∣∣ak,2

∣∣∣
(B − A)(p − Υ)

≤

√∣∣∣ak,1

∣∣∣ ∣∣∣ak,2

∣∣∣√∏2
j=1(B − A)(p − σ j)

. (30)

This is equivalent to √∣∣∣ak,1

∣∣∣ ∣∣∣ak,2

∣∣∣ ≤ (B − A)(p − Υ)√∏2
j=1(B − A)(p − σ j)

.

Further, by using (29), we need to find the largest Υ such that√∏2
j=1(B − A)(p − σ j)

k(1 + B)Φk
p,κ(δ, λ, µ, l)

≤
(B − A)(p − Υ)√∏2

j=1(B − A)(p − σ j)

or, equivalently, that
1

(B − A)(p − Υ)
≤

k(1 + B)Φk
p,κ(δ, λ, µ, l)∏2

j=1(B − A)(p − σ j)
.

It follows from (30) that

Υ ≤ p −

∏2
j=1(B − A)(p − σ j)

(B − A)k(1 + B)Φk
p,κ(δ, λ, µ, l)

.

Now, defining the function χ(k) by:

χ(k) = p −

∏2
j=1(B − A)(p − σ j)

(B − A)k(1 + B)Φk
p,κ(δ, λ, µ, l)

,

we see that χ′(k) ≥ 0 for k ≥ p + n. This implies that

Υ ≤ χ(n + p) = p −

∏2
j=1(B − A)(p − σ j)

(B − A)(n + p)(1 + B)Φn+p
p,κ (δ, λ, µ, l)

.
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Therefore, the result is true for m = 2.
Suppose that the result is true for any positive integer m. Then, we have ( f1 • f2 • ... • fm • fm+1)(z) ∈

P̃
δ
κ,λ,µ,l(A,B;γ, p), when

γ = p −
(B − A)(p − Υ)(B − A)(p − σm+1)

(B − A)(n + p)(1 + B)Φn+p
p,κ (δ, λ, µ, l)

where Υ is given by (27). After a simple calculation, we have

γ ≤ p −

∏m+1
j=1 (B − A)(p − σ j)

(B − A)[(n + p)(1 + B)Φn+p
p,κ (δ, λ, µ, l)]m

.

Thus, the result is true for m + 1. Therefore, by using the mathematical induction, we conclude that the
result is true for any positive integer m.

Finally, taking the functions f j(z) defined by (28), we have

( f1 • f2 • ... • fm)(z) = zp
−


m∏

j=1

(B − A)(p − σ j)

(p + n)(1 + B)Φp+n
p,κ (δ, λ, µ, l)

 zp+n

= zp
−Ap+nzp+n,

which shows that
∞∑

k=p+n

k(1 + B)Φk
p,κ(δ, λ, µ, l)

(B − A)(p − Υ)
Ak =

(n + p)(1 + B)Φn+p
p,κ (δ, λ, µ, l)

(B − A)(p − Υ)
Ap+n

=
(n + p)(1 + B)Φn+p

p (δ, λ, µ, l)

(B − A)(p − Υ)

×


2∏

j=1

(B − A)(p − σ j)

(p + n)(1 + B)Φp+n
p,κ (δ, λ, µ, l)

 .
Consequently, the result is sharp.

Putting σ j = σ ( j = 1,m) in Theorem 5.1, we have Corollary 5.2

Corollary 5.2. If f j(z) ∈ P̃δ
κ,λ,µ,l(A,B; σ, p) ( j = 1,m), then

( f1 • f2 • ... • fm)(z) ∈ P̃δκ,λ,µ,l(A,B;Υ, p),

where

Υ := p −
[(B − A)(p − σ)]m

(B − A)[(n + p)(1 + B)Φn+p
p,κ (δ, λ, µ, l)]m−1

.

The result is sharp for the functions f j(z) given by:

f j(z) =
(B − A)(p − σ)

(n + p)(1 + B)Φn+p
p,κ (δ, λ, µ, l)

zp+n ( j = 1,m).

Conclusion 5.3. In this study, new subclasses of p-valent analytic functions associated with Borel distribution
functions were introduced by means of a generalized multiplier transformation. Several fundamental properties
of these subclasses were investigated, including coefficient estimates, growth and distortion bounds, neighborhood
inclusions, partial sum results, and quasi-convolution properties. It is expected that the techniques and results
presented here will stimulate further research on multivalent function classes associated with probability distributions
and related operator theory.
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