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Abstract. In this study, fractional order mathematical modelling of the human liver using the Caputo
fraction derivative is considered. This model was divided into two compartments, Bromsulphthalein (BDP)
content in blood (Z) and Bromsulphthalein (BDP) content in liver (W). The Caputo derivative was used as
the fractional derivative. A stability analysis was performed on the fractional-order mathematical model
of the human liver. The system’s existence, uniqueness and non-negativity were analysed mathematically.
Numerical solutions were obtained using the Generalized Euler method and interpreted graphically.

1. Introduction

The liver is a roughly triangular organ that extends across the entire abdominal cavity just below the
diaphragm [1]. The liver is one of the most active and complex organs with the most functions in the
human body. It is a very important organ in terms of fulfilling vital functions such as purifying the blood
from many foreign and toxic substances such as drugs and alcohol, digesting fats in the body, removing
wastes from the body and producing bile [2]. Bromsulphalein (BSP) is a dye injected into the bloodstream.
The liver is the only organ thatabsorbs BSP and secretes it directly into bile. Measuring the BSP level in
the blood at differenttimes provides a finite sequence of values showing the rapid or slow decline of BSP
in the blood,and this sequence is used to investigate liver function. Bromsulphalein is a dye used in liver
function tests. Bromsulphalein allows the calculation of the volume of blood flowing from the liver based
on differences in dye levels. Determining the rate at which the dye is removed from the bloodstream
provides a measure of liver function [3].

Mathematical modelling is to describe a process, a real-world problem, with a mathematical formulation.
For this, first, all possible details of the process should be evaluated and accordingly a model as simple as
possible should be established. The mathematical formulation should be suitable for general real world
problems [4]. In order to create a model of any problem to be solved, the model must be established
systematically and go through certain stages. First of all, it should be determined what the problem is
and a process should be started for the solution by making all necessary analyses about the problem.
In modelling, each step in this process is a logical continuation of the previous step. The mathematical
modelling process is generally seen as perception and processing. The reliability and accuracy of these two
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stages lead the modeller to the real solution. All this is to convert the model into a mathematical form.
Thus, general equations are formed and the factors affecting the problem are revealed [5, 6].

Since fractional order differential equations are generalised versions of full order differential equations,
modelling studies using fractional order differential equations help us to minimise the errors arising from
the parameters that we have to neglect when modelling real life events. Thus, models using fractional
order differential equations give more realistic and applicable results. For this reason, models created with
fractional order differential equations are emerging as interesting and special studies [7-12]. It has been
proven that employing a fractional method to represent the mechanism is significantly superior to adopting
an integer order optimisation, as it facilitates analysis to understand the actual evidence and possesses
several substantial advantages. Furthermore, the device’s capacity for recollection and inheritance features
renders it a highly valuable asset in the domains of simulating and interpreting real phenomena. It is
evident that a multitude of notions and expressions inherent to fractional calculus are advantageous for the
modelling of infection transmission. This includes the Atangana-Baleanu, Caputo-Fabrizio, and Caputo
derivatives [13-22].

This paper consists of four parts. In the first part, the importance of fractional mathematical modelling
and information about human liver is given. In the second part, the formation of a fractional order
mathematical model of the human liver, the mathematical analysis of the existence, uniqueness and non-
negativity of the system, the Generalized Euler Method and the stability analysis of the model are presented.
In the third section, the fractional model is applied and numerical results are obtained and graphs are drawn.
In the fourth section, conclusions are given.

2. Fractional Derivation and Fractional Order Mathematical Model of Human Liver

The most commonly used definitions of the fractional derivative are Riemann-Liouville, Caputo,
Atangana-Baleanu and the Conformable derivative. In this study, because the classical initial conditions
are easily applicable and provide ease of calculation, the Caputo derivative operator was preferred and
modeling was created. The definition of the Caputo fractional derivative is given below.

Definition 2.1. [4] Let f (t) be a function that can be continuously differentiable n times. The value of the function
f (t) for the value of α that satisfies the condition n− 1 < α < n. The Caputo fractional derivative of α-th order f (t) is
defined by

Dαt f (t) =
1

Γ(n − α)

∫ t

a
(t − x)(n−α−1) f n(x) dx.

Definition 2.2. [4] The Riemann-Liouville (RL) fractional-order integral of a function A(t) ∈ Cn (n ≥ −1) is given
by

JγA(t) =
1
Γ(α)

∫ t

0
(t − s)(γ−1)A(s) ds, J0A(t) = A(t). (2.1)

Definition 2.3. [4] The series expansion of two-parametrized form of Mittag-Leffler function for a, b > 0 is given by

Ea,b(t) =
∞∑

i=0

ti

Γ(ai + b)
. (2.2)

2.1. The Fractional Order Mathematical Model of Human Liver

The fractional order human liver mathematical model was divided into two compartments, the amount
of Bromsulphthalein (BDP) in the blood (Z) and the amount of Bromsulphthalein (BDP) in the liver (W).
The expression of the fractional order human liver mathematical model as a system of fractional differential
equations is as follows.
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dαZ
dtα
= −aZ + bW

dαW
dtα

= aZ − (b + d)W.
(2.3)

Here dα
dtα is the Caputo fractional derivative of α-th order with respect to time t. The constants a,b,d are

transfer rates and are unknown. The compartments are shown in Table 1. The initial values are defined as,

Z(0) = Z0, W(0) =W0

0 < α ≤ 1.

Table 1: Variables used in the model and their meanings
Variables used in the systems Meaning

Z(t) amount of Bromsulphthalein in the blood at time t
W(t) amount of Bromsulphthalein in the liver at time t

Because fractional-order models have a memory feature in events related to a time variable, they show
more realistic and accurate results than integer-order models [5–14]. Therefore, the established model was
created as a fractional order. In the system of (2.3), the fractional-order differential equation for α = 1 is
reduces to a full order differential equation.

2.2. Existence, Uniqueness and Non-Negativity of the System
We investigate the exintence and uniqueness of the solutions of the fractional-order system (2.3) in the

region B × [t0,T] where

B = {(Z,W) ∈ R2
+ : max{| Z |, |W |} ≤ Ψ,min{| Z |, |W |} ≥ Ψ0} (2.4)

and T < +∞.

Theorem 2.4. For each X0 = (Z0,W0) ∈ B there exists a unique solution X(t) ∈ B of the fractional-order system
(2.3) with intial condition X0, which is defined for all t ≥ 0.

Proof: We denote X = (Z,W) and X̄ = (Z̄, W̄). Consider a mapping M(X) = (M1(X),M2(X)) and

M1(X) = −aZ + bW
M2(X) = aZ − (b + d)W

(2.5)

For any X, X̄ ∈ B it follows from equation (2.5) that

∥M(X) −M(X̄) ∥= |M1(X) −M1(X̄)| + |M2(X) −M2(X̄)| (2.6)

|M1(X) −M1(X̄)| = | − aZ + bW + aZ̄ − bW̄|
= | − a(Z − Z̄) + b(W − W̄)|

≤ a|Z − Z̄| + b|W − W̄|

|M2(X) −M2(X̄)| = |aZ − (b + d)W − aZ̄ + (b + d)W̄|
= |a(Z − Z̄) − (b + d)(W − W̄)|
≤ a|Z − Z̄| + (b + d)|W − W̄|

Then equation (2.6) becomes,

∥M(X) −M(X̄) ∥≤ a|Z − Z̄| + b|W − W̄| + a|Z − Z̄| + (b + d)|W − W̄| ≤ 2a|Z − Z̄| + (2b + d)|W − W̄|
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∥M(X) −M(X̄) ∥≤ L ∥ X − X̄ ∥where L = max(2a, 2b + d).
Therefore M(X) obeys Lipschitz condition which implies the existence and uniqueness of solution of the

fractional-order system (2.3).

Theorem 2.5. ∀ t ≥ 0, Z(0) = Z0 ≥ 0, W(0) = W0 ≥ 0, the solutions of the system in (2.3) with initial conditions
(Z(t),W(t)) ∈ R2

+ are not negative [16–18].

Proof: (Generalized Mean Value Theorem) Let f (x) ∈ C[a, b] and Dα f (x) ∈ C[a, b] for 0 < α ≤ 1. Then we
have

f (x) = f (α) +
1
Γ(α)

Dα f (ϵ)(x − a)α (2.7)

with 0 ≤ ϵ ≤ x, ∀x ∈ (a, b].
The existence and uniqueness of the solution (2.3) in (0,∞) can be obtained via Generalized Mean Value

Theorem. We need to show that the domain R2
+ is positively invariant. Since

DαZ = −aZ + bW ≥ 0
DαW = aZ − (b + d)W ≥ 0

on each hyperplane bounding the nonnegative orthant, the vector field points into R2
+.

2.3. Fractional Order Mathematical Model of Human Liver Equilibrium Point and Stability Analysis
Definition 2.6. That the equilibrium point of the first-order difference equation system given as

Xt+1 = F(Xt) (2.8)

is the point X̄ that satisfies the equations X̄ = F(X̄). Also, let us consider J(X̄) to be the Jacobian matrix calculated at
this equilibrium point. If the eigenvalues obtained from the equation det(J(X̄) − λI) = 0 satisfy the conditions λi , 1
for i = 1, 2, ...,n then this point is called hyperbolic equilibrium, otherwise it is called non-hyperbolic equilibrium [9].

In order to find the equilibrium point (2.3) in the system , DαZ = 0 , DαW = 0 , it is considered to be.

dαZ
dtα
= −aZ + bW

dαW
dtα

= aZ − (b + d)W.

E0 = (z0,w0) including,
E0 = (0, 0) (2.9)

equilibrium point is obtained. Jacobian matrix of the system at the equilibrium point

J(E0) =
[
−a b
a −b − d

]
(2.10)

it is obtained. The eigenvalues obtained from the Jacobian matrix (2.10) are given below.

λ1 =
−(a + b + d) +

√
(a + b + d)2 − 4ad
2

λ2 =
−(a + b + d) −

√
(a + b + d)2 − 4ad
2

where a, b, d are the parameters of positively defined real numbers. It is clear that λ2 < 0. If λ1 < 0, the
equilibrium point of the system is locally asymptotically stable. If λ1 > 0, the equilibrium point of the
system is unstable.
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2.4. Generalized Euler Method

In this paper, we used the Generalized Euler method to solve the initial value problem with the Caputo
fractional derivative. Many of the mathematical models consist of nonlinear systems and finding solutions
to these systems can be quite difficult. In most cases, analytical solutions cannot be found and a numerical
approach should be considered for this. One of these approaches is the Generalized Euler method [15].
Dαy(t) = f (t, y(t)), y(0) = y0, 0 < α ≤ 1, 0 < t < α for the initial value problem, h = a

n impending [t j, t j+1] is
divided into n sub with j = 0, 1, ..,n − 1. Suppose that y(t),Dαy(t) and D2αy(t) are continuous in the range
[0, a] and using the generalized Taylor’s formula, the following equation is obtained [15].

y(t1) = y(t0) +
hα

Γ(α + 1)
f (t0, y(t0)).

This process will be repeated to create an array. Let t j = t j+1 + h such that

y(t j+1) = y(t j) +
hα

Γ(α + 1)
f (t j, y(t j))

j = 0, 1, ..,n − 1 the generalized formula in the form is obtained. For each k = 0, 1, ...,n − 1 with step size h,

DαZ(t) = −aZ(k) + bW(k)
DαW(t) = aZ(k) − (b + d)W(k)

(2.11)

For t ∈ [0, h), t
h ∈ [0, 1) we have

DαZ(t) = −aZ(0) + bW(0)
DαW(t) = aZ(0) − (b + d)W(0)

(2.12)

The solution of (2.12) reduces to

Z(1) = Z(0) +
hα

Γ(α + 1)
(−aZ(0) + bW(0))

W(1) =W(0) +
hα

Γ(α + 1)
(aZ(0) − (b + d)W(0))

(2.13)

For t ∈ [h, 2h), t
h ∈ [1, 2), we get

Z(2) = Z(1) +
hα

Γ(α + 1)
(−aZ(1) + bW(1))

W(2) =W(1) +
hα

Γ(α + 1)
(aZ(1) − (b + d)W(1))

(2.14)

Repeating the process n times, we obtain

Z(n + 1) = Z(n) +
hα

Γ(α + 1)
(−aZ(n) + bW(n))

W(n + 1) =W(n) +
hα

Γ(α + 1)
(aZ(n) − (b + d)W(n))

(2.15)

is obtained.
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3. Numerical Simulation of Fractional Order Mathematical Model of Human Liver

In this section, numerical simulation and graphs of the fractional order human liver mathematical
model will be presented. Now let us obtain the numerical simulation of the fractional order human liver
mathematical model using the Generalized Euler method. Let us consider the following parameters. Let
Z = 250,W = 0, a = 0.054736, b = 0.0152704, d = 0.0093906 and let the step size be h = 0.1. Using the Euler
method, the following tables are obtained.

Table 2: The values of Z and W at the moment t for α = 1.
t Z(t) W(t)
0 250,00 0,00
1 248,63 1,36
2 247,27 2,72
3 245,92 4,07
4 244,58 5,40
5 243,25 6,73
6 241,93 8,04
7 240,61 9,35
8 239,31 10,64
9 238,02 11,93

10 236,73 13,20
11 235,46 14,46
12 234,19 15,72
13 232,93 16,96
14 231,68 18,19

Table 3: The values of Z and W at the moment t for α = 0.9.
t Z(t) W(t)
0 250,00 0,00
1 248,20 1,79
2 246,43 3,56
3 244,67 5,31
4 242,93 7,05
5 241,20 8,77
6 239,49 10,47
7 237,80 12,15
8 236,12 13,81
9 234,45 15,46

10 232,80 17,09
11 231,17 18,70
12 229,55 20,30
13 227,95 21,88
14 226,36 23,44
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Table 4: The values of Z and W at the moment t for α = 0.8.
t Z(t) W(t)
0 250,00 0,00
1 247,67 2,32
2 245,37 4,62
3 243,09 6,89
4 240,85 9,12
5 238,63 11,33
6 236,43 13,50
7 234,27 15,65
8 232,12 17,76
9 230,01 19,85

10 227,92 21,91
11 225,85 23,94
12 223,81 25,94
13 221,79 27,92
14 219,80 29,87

Figure 1: The graph of change of the Z compartment model.
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Figure 2: The graph of change of the W compartment model.

In Table 3, Table 4 and Table 5, the changes of Z and W are observed for different states of α. By the
above figures, we observe the following highlights:

1. It has been observed that the level of bromsulphthalein (BSP) in the bloodstream decreases over time
(Fig.1).

2. Over time, an increase in the amount of bromsulphthalein (BSP) in the liver has been observed (Fig.2).

4. Conclusions and Comments

In this study, a new implementation of the system, which is analysed as a realistic fractional order
human liver mathematical model, is performed and graphs are drawn with the help of the numerical
results obtained. In this study, mathematical analysis and stability analysis of the existence, uniqueness
and non-negativity of the fractional orderhuman liver mathematical model system were performed. The
equilibrium point of the fractional order human liver mathematical model was obtained and stability
analysis was performed. In the obtained graphs, it is observed that the amount of Bromsulphthalein (BSP)
in the blood decreases with time and the amount of Bromsulphthalein (BSP) in the liver increases with time.
In addition, the high fractional order value α, which is considered for the related systems, represents the
high load of the system. This shows that the fractional derivative gives effective results in real life problems
that depend on past and future, such as the human liver model system, due to its memory and inheritance
properties.
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[18] Öztürk, Z., Yousef, A., Bilgil, H., & Sorgun, S. (2024). A Fractional-order mathematical model to analyze the stability and

develop a sterilization strategy for the habitat of stray dogs. An International Journal of Optimization and Control: Theories &
Applications (IJOCTA), 14(2), 134-146.

[19] Bozkurt, F., Yousef, A., Baleanu, D., & Alzabut, J. (2020). A mathematical model of the evolution and spread of pathogenic
coronaviruses from natural host to human host. Chaos, Solitons & Fractals, 138, 109931.

[20] Dokuyucu, M. A., Celik, E., Bulut, H., & Mehmet Baskonus, H. (2018). Cancer treatment model with the Caputo-Fabrizio
fractional derivative. The European Physical Journal Plus, 133, 1-6.

[21] Nisar, K. S., Logeswari, K., Vijayaraj, V., Baskonus, H. M., & Ravichandran, C. (2022). Fractional order modeling the gemini virus
in capsicum annuum with optimal control. Fractal and Fractional, 6(2), 61.

[22] Hamza, A. E., Osman, O., Ali, A., Alsulami, A., Aldwoah, K., Mustafa, A., & Saber, H. (2024). Fractal-fractional-order modeling
of liver fibrosis disease and its mathematical results with subinterval transitions. Fractal and Fractional, 8(11), 638.


