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Abstract. In this paper, we have performed some new integral inequalities of Griiss type via generalized
proportional fractional integral operators. We have used fairly elemantery integration methods, some
classical integral inequalities and properties of generalized proportional fractional integral operators.

1. Introduction

In [20], Griiss inequality has been given as:
Suppose that the functions U, V : [a1,b1] — R are positive with A < U(t) < Band C < V(s) < D, for all
t,s € [a1, b1], then the following inequality holds:

by

bl hl
1 1 1
- fU(t)V(S)d tds — o ‘fl,l(i,‘)dtb1 —a fV(s)ds 1)

ay a1

1
< Z(B—A)(D—C)

where the constants B, A,C,D € R and 1 is the sharp value of inequality (1).

For new results regarding Griiss inequality, which is one of the most striking types of inequalities among
integral inequalities and has attracted the attention of many researchers, see the articles [17]-[20].

Let us recall some well-known concepts. We note that the beta function B (a, f) is defined (see [15])

f[et@a-efta (R),R(B) > 0)

B(a,p)={ "rw _
rr(al;(fi[;) (“’ﬁ €C\ Zo)

where T is the familiar Gamma function. Here and in the following, let C,R,R" and z, be the sets of

complex numbers, real numbers, positive real numbers and non-positive integers, respectively and let
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Ry =R*U{0}.

Froactional analysis has given a new orientation not only to mathematics, but also to physics, statistics,
engineering and other applied sciences, with its birth dating back to ancient times and its rapid development
in recent years. This development has gained a new momentum in recent years, especially with the
definition of new fractional integral and derivative operators. Although new fractional operators lead to
effective applications and generalizations in the field, they also have advantages over classical derivative
and integral operators with their core structures and properties. Let’s take a look at a few of these operators.

Definition 1.1. (See [15]) Let f € Ly[a,b]. The Riemannn-Liouville integrals Jg, f and ] f of order a > 0 with
a > 0 are defined by

¢
o f() = ﬁ f (t—x)"f(x)dx, t>a
and
Jo = —— f ot eod, <
b- I'(a) ’
respectzvely Here I'(t) is the Gamma function and its definition is T'(t) = f e~ Ydx. It is to be noted that
% f(B) = J)_f(t) = f(t) in the case of a = 1, the fractional integral reduces to the classical integral.

In [16], Jarad et al. identified the proportional generalized fractional integrals that satisfy many impor-
tant features as follows:

Definition 1.2. The left and right generalized proportional fracitonal integral operators are respectively defined by

IV () = T )f (0] - xy 1 f()dx,  t>a

and

~a _ 1 ! [ﬂ(x—t)] a-1
—I7f(t) = T (@) j; el'7 (x =) f(x)dx, t<b
where A € (0,1] and a € C and R(a) > 0.

The readers can find detailed information about fractional analysis studies, different usage areas of new
operators and current trends in inequality theory in the articles [1]-[14].
The main motivation of this paper is to prove some new integral inequalities via generalized proportional
fracitonal integral operators.

2. Main results

Lemma 2.1. Let 0 < Ay < 1and let m, M € R and v be an integrable function on [0, co). Then, we have

oo ki k
1 af (t — gy 2
/\ar(a) kl' — /ZGPFIa,Al ’()z(t) + (EPFIa,Alv(t» (2)
1 fa=0 1: 1

oo _k
— M ﬂ (t - a)LH—kl _ GPFIa,/hU(t)
)\‘fl“(a) = kl' a+ k1 a
1=

00 ki
GPFrah (1M ay (t- a)*+h
(“ ) TT(@) £ Z o ath

Z 1 ' (t—a) achIa Al((M ov(8))(v(t) — m))

0(+k1

/\“F(az

forallt >0, a > 0 whereay = A}g .
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Proof. Let m, M € R and v be an integrable function on [0, o), for all 7, p € [0, ), we have

(M = v(p))(v(7) = m) + (M = o(1))(v(p) — m) €)
~(M —v(0))(v(7) — m) — (M~ v(p))(v(p) — m)
= (1) + v%(p) + 20(7)v(p).
Multiplying both sides of (3) by A‘F(a) M - =9t — 7)9-1, then integrating the resulting identity with respect
totfromatof(t €(0,t),t>0), we get

ook
1 1 _ a\atk

1 L(t—a)* _ GPFa\y
/\“T(a) Z N o g e 1)

(wm—@—?ﬁMﬂM—mm@m—m»

1 ay' (t - a)*h
—((M = v(p))(w(p) - m)) AT () Z kLqu
1

o)

(t- ”)Mkl GPFa,A
Z e P2 ).

=§Ww%w+wmwml

-1
Now, again multiply both side of (4) by A (¢ - p)*!, then integrating the resulting identity with

A“F(a)
respect to p fromatot (p € (0,1),t > 0), wh1ch gives (2), and the lemma is proved. [

Theorem 2.2. Let f and g be two integrable function on [0, o), satisfying the condition that

we have
= g (f gyt
_1 — GPF a,M _ GPFya,A4 GPF 1a,A4
A“F((X Z k! a+k ° IV fg(t) — 7 I f(@), T 1 g () (6)

o ki a+k1
1
(M@ZF )anP>

where a1 = Agl.

Proof. Let f and g be two function satisfying the condition (5). Define

H(z, p) = (f(0) = £(0))(9(x) - 9(p)), T, p € (0, ), > 0.

It follows that
H(z, p) = f(1)g(7) — f(D)g(p) — f(p)9(T) + f(p)g(p). )

A1-1
Then, multiplying (7) by 71 e 0 — p)a1, by integrating the resulting identity with respect to 7 from
1
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atot, weget

1 g I _
Wf H(z, p)e ™ 70t = 1) 1dr ®)
= EPFI“'“fga)—g(pﬁ”ﬂf“f(t) Flp)a" 1 g(t)

) 1 (t )a+k1

1
f(p)g(f’)mr() — kil a+k

Aq-1
Again multiplying (8) by M%(a)e’l‘il(t_p (¢t - p)*~!, which is positive because p € (0,t) and integrating the
1
resulting identity with respect to p from a to t, we have

1 r 42 (=), U t-p) 1 1 1
Wf f H(x, p)e e TP E = p) (= 1) (E = ) dedp

_ (t - ”) ' GPF a4 GPF a1 £(4)GPF [
= ( M(Q)Zkl e fa) = S RO g0 |

Applying the Cauchy-Schwarz inequality, we obtain

00 k t— 2
(A“F Z: kl - il)k GPF [,y fg(t)_f(lSPFIa,Al f(t)uGPFIa,/\l g(t)) ©)
ok
1 1 (E=@)"™ Gpr i, 200 (GPEaM 2
= (A?T(Ot)kggk_ﬂaT” 1A = (G f<f>))
ok
1 @' (t =)™ cpp 0 o GPFja, s 2
(Ama)k;okT!Tzq” ORI G 0) )
Since (M — f(1))(f(t) = m) > 0 and (P - g(#))(9(t) - p) = 0, we can write
o A (t—a) R
)\“F(a Z i S GPFf ((M_ f(t))(f(t)—m))zo
and
- 1 D)™ pr _ 3
Aarm) 2 Woaik o ((P 9)(9(® P)) >0
Thus
1 ) gkl (t a)a+k1 2
IS GPFra,Ay 224y _ | GPFraMy
M@ Lkl avk * 0 ( I f <f>) (10)

1 1L (E=a)™™ e
< (Mmr(a)klz_;)kll PPy f(t))

ook a+k;
| GPFI (y — m ' (t—a)*t
/\i‘l’(a) = kl' a + k1
-
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and
2

1 L= @)™ ppan, 2 _ [GPFran
M(Q)Z ORI} )

P o0 al (t_a)a+k1 GPFrad

eI <

()\‘fl’(a)k_okll otk ° g(t)
-

00

@) (t—a)th )

GPF 7a,A1 _ 1
X(ﬂ PO Lkl vk

Combining (9), (10) and (11), using lemma (2.1), we conclude that

k 2

> 4y (t—a)*th s a1 ¢(n\GPEqa,l;
(v X k—aT;?PFI 0 = IO 0) 12)
. 1 (t — "™ Gppan
(A“l" (@) Z k! a+k ° ! f(t))
GPF o, A _ (t )a+kl
( i f(t) /\ar( ) Z k! a+k ) 13)

i (t—a) _ GPFya,\y
(/\“F(oz)zk IV 9(”)

GPFra M o P . 1 L(t—a)th
X(“ PO @ Ll avk )

Now, using the elementary inequality 4ab < (a + b)?, a,b € R, we can show that

1 (t ot GPF a,A4
()\“F(a) Z k! a+ k - aPFI * f(t)) (14)

) ky a+k
CPFpah fpy_ M 4 (E— )t
X(ﬂ I f® T (1) I;) kil a+h
—

2

1 v -k
(/\“F(a) — kil a+k (M =m)
and
) k ks
4 (E-a)™  oppan,
( @ Zk L g(t)) (15)

k1 a+ky
X(GPFIa,Alg(t) __ P ! M)

e 1(t_aa+k1
(/\"‘F(oz)zk Ta+k _p))'

From (12), (14) and (15), we get the result (6). O
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Lemma 2.3. Let 0 < Ay <1and 0 < Ay < 1and let f and g be two positive integrable function on [0, oo) then, for
allt>0,a>0,B >0, we have

oo ki
[ L L e (16)

2

1 w4 (t—a)ftk
+ Z 2 ( ) - aGPFIa,/\lfg(t) _ SPFIQ’Alf(t)EPFIﬁ’Azg(f) _ aGPFIﬁ,Azf(t)SPFIa,/\lg(t)]

) k oo _ky k
1 4 (t-a™ GPF P 1 a (=2 cpp o, 2 GPE7a,\ £(#\GPF )
< — 2F2(F) + 2 Y 7 GPFpah ¢2(yy _ 9GPFrahy (\GPEIBA2 £(4

(Ai“”a) Lkl ath o N Akl pek L SOTETIOEEEO

oo ) kz
1 ”11 (t=a)**™" cpp 1 a (- a)f+h
¢ % Az A+ —— EPFItX//\l 2(¢ _ZEPFI%/M t[?PFIﬁ’/\Z ¢
(A‘fl“(a) Skl ath 7o V) = Lkl Btk g°(#) g(t) g(t)

_ A1
Ay °

-1
where a1 = A}h

Proof. Multiplying (8) by A"r(ﬁ g e (¢t - p)P~1 which is positive for p € (0,t) and integrate with respect to

p from a to ¢, then applying Cauchy-Schwarz inequality for double integral, we obtain (16). [

Lemma 2.4. Let 0 < Ay < 1and 0 < Ay < 1and let v be a integrable function on [0, c0) and m, M € R, then for all
t>0,a>0,8>0, wehave

i D corppaeg 17)

/\"‘F(a) a+ky

1 - 2 P (t—a)ftRe
/\ﬁr(‘B) = kz ﬁ + kz a
_ngFIa A1 U(t)EPFIﬁ /\zv(t)

ook

_ 1 4 (t=a)™ oo,

= (M/\fl“(a)k_okl! ark e 0
-

1M (1)

oo ko
X(GPFIﬁ//\Z'U(t) —-m 1 ai w)
a Aﬁl”(ﬁ) kj)_' ‘B + k2

o _ Ntk
+(M 1 2 *(t—a)ft aGPFIﬁ,sz(t))

Xrp k! Bk

GPFya o py (t —a)*th
X(“ ol Aar(a) Z ki a+h

1 = 2 * (t — )Pk 2 PR, ) i
/\ﬁr(ﬁ) = kz B+ky I ((M () (0(t) m))

o 4y (t—a)* .
/\al—-(a) Z kl HGPFIB,/\ ((M —o(t))(v(t) — m)),

a+k;

where a; = A}gl =35
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-1
Proof. Multiplying (4) by Apl"(ﬁ) Az =P — p)P~1, which is positive for p € (0,t), t > 0, then integrating the

resulting identity with respect to p from a to ¢, we get

o0 k
GPFya A ipy a (t—a)**h
(ﬂ "ol )\“F(a) Z  ath (18)

Aozl
e TPt - py~ (M - v(p))dp

X
AT (B)

o _k
M E (t B a)a+k1 _ GPFI{X,M 'U(t)
/\‘1)‘1"(0() =0 k1' a+ k1 a
1=

o, ¢
=P [ (otp - m)dp

I 6 ft AZil(t p) -1
e 2 (t O)‘B dO
/\g ( ) a

X
AT ()

—SPEIM (M = v(t)(o(t) — m))

Z 1 (t —a)*th
)\“F(a) k! a+k

e,z\T_(t—P)(t _ p)ﬁ‘l(M — v(p))(z}(p) - m)dp

oY;
A,T(B)
o) ko
_ 1 4y (t — a)fthe GPF 172 ()
)\ﬁI’(ﬁ) kz! ﬁ + kz g
2 k2=0

1\ 1 L(t—a)*th o
A"‘F(a) k1 a+k °

BA20(8)
+207F 1 Al v(t)uGPFIﬁ'AZ v (t).

This gives the proof of lemma (2.4) O

Theorem 2.5. Let 0 < Ay < 1and 0 < A, < 1let f,g be two integrable function on [0, 00), satisfying the condition
that

m< f(t)<M,p<gt) <P, mMpPeR

and t € [0,00). Then forall T > 0, a > 0, B > 0, we have

oo _k
1 al t—a a+ky
( L e g (19)

ATF(&) o kl' o+ k] a

(o)

1 (t —a)fth GPFya,A
Py st G R0
A’*Rﬁ) = kz Btk 1o
2
SSPEIN ST g (e) — SPPIPA £GP g )
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= k t—a) i
<\ L wen o)

1 v ﬂi(t—a)ﬁ”‘z)
AT(p) fmb ket Btk

@”ﬂhﬂn—m

) k

1 ay (t — a)ftk

" ( p k2' ( B +)k i PFIﬁ'AZf(t))
/\QF(B) kr=0 2 2

ook
1 a (t _ a)m-k]
GPFa,Aq _ 1
(“ 2 f® mA‘l"F(a) Skl ath
1=

. (t—a)™™ H _ GPFja\y
[( AT(a) ¢ Z Al atk e L0
0 (t _ a ﬁ+k2
Z‘ k2 ﬁ + k2

1y ”2 (t—a)f™e  cpp )
+|P = — CPEIPA2 g
( Aﬁr(ﬁ) k ~ k2' ‘8 + kZ a g( )

GPF A2 (4) —
(ﬂ g(t) Aﬁr(ﬁ)

GPF ek, (t—a)‘”kl
(PFI Xk P/\“l"(a)zkl ath )]

Proof. Since (M - f(t))(f(t) - m) > 0and (P - g(t))(g(t) - p) > 0. Then we can write

00 K
1 a (t—a)"‘+ GPF .
_anhﬂaia+h 1M - FO)F0) ~m) 20)
1 (t_“)ﬁ GPFra i ((nf _ ~
Aﬁr(ﬁ) = kz B+ky ° I <(M FOf(®) m))
< 0
and
© gk ok
Z %%gmﬁm(@ - gH)g(t) - p)) 1)

AT (a) =~ 1!

Tk prk (o060 -p)

< 0.

Applying lemma (2.4) to f and g, then using lemma (2.3) and the equation (20) and (21), we get (19). O
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