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Abstract. In this paper, we have performed some new integral inequalities of Grüss type via generalized
proportional fractional integral operators. We have used fairly elemantery integration methods, some
classical integral inequalities and properties of generalized proportional fractional integral operators.

1. Introduction

In [20], Grüss inequality has been given as:
Suppose that the functions U,V : [a1, b1] → R are positive with A ≤ U(t) ≤ B and C ≤ V(s) ≤ D, for all

t, s ∈ [a1, b1], then the following inequality holds:∣∣∣∣∣∣∣∣∣
1

b1 − a1

b1∫
a1

U(t)V(s)d tds −
1

b1 − a1

b1∫
a1

U(t)dt
1

b1 − a1

b1∫
a1

V(s)ds

∣∣∣∣∣∣∣∣∣ (1)

≤
1
4

(B − A) (D − C)

where the constants B,A,C,D ∈ R and 1
4 is the sharp value of inequality (1).

For new results regarding Grüss inequality, which is one of the most striking types of inequalities among
integral inequalities and has attracted the attention of many researchers, see the articles [17]-[20].
Let us recall some well-known concepts. We note that the beta function B

(
α, β

)
is defined (see [15])

B
(
α, β

)
=


∫ 1

0 tα−1 (1 − t)β−1 dt
(
R (α) ,R

(
β
)
> 0

)
Γ(α)Γ(β)
Γ(α+β)

(
α, β ∈ C \Z−0

)
where Γ is the familiar Gamma function. Here and in the following, let C,R,R+ and Z−0 be the sets of
complex numbers, real numbers, positive real numbers and non-positive integers, respectively and let
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R+0 = R
+
∪ {0} .

Fractional analysis has given a new orientation not only to mathematics, but also to physics, statistics,
engineering and other applied sciences, with its birth dating back to ancient times and its rapid development
in recent years. This development has gained a new momentum in recent years, especially with the
definition of new fractional integral and derivative operators. Although new fractional operators lead to
effective applications and generalizations in the field, they also have advantages over classical derivative
and integral operators with their core structures and properties. Let’s take a look at a few of these operators.

Definition 1.1. (See [15]) Let f ∈ L1[a, b]. The Riemannn-Liouville integrals Jαa+ f and Jαb− f of order α > 0 with
a ≥ 0 are defined by

Jαa+ f (t) =
1
Γ(α)

∫ t

a
(t − x)α−1 f (x)dx, t > a

and

Jαb− f (t) =
1
Γ(α)

∫ b

t
(x − t)α−1 f (x)dx, t < b

respectively. Here Γ(t) is the Gamma function and its definition is Γ(t) =
∫
∞

0 e−ttx−1dx. It is to be noted that
J0
a+ f (t) = J0

b− f (t) = f (t) in the case of α = 1, the fractional integral reduces to the classical integral.

In [16], Jarad et al. identified the proportional generalized fractional integrals that satisfy many impor-
tant features as follows:

Definition 1.2. The left and right generalized proportional fracitonal integral operators are respectively defined by

a+J
α,λ f (t) =

1
λαΓ(α)

∫ t

a
e[ λ−1

λ (t−x)](t − x)α−1 f (x)dx, t > a

and

b−J
α f (t) =

1
λαΓ(α)

∫ b

t
e[ λ−1

λ (x−t)](x − t)α−1 f (x)dx, t < b

where λ ∈ (0, 1] and α ∈ C and R(α) > 0.

The readers can find detailed information about fractional analysis studies, different usage areas of new
operators and current trends in inequality theory in the articles [1]-[14].
The main motivation of this paper is to prove some new integral inequalities via generalized proportional
fracitonal integral operators.

2. Main results

Lemma 2.1. Let 0 < λ1 ≤ 1 and let m,M ∈ ℜ and v be an integrable function on [0,∞). Then, we have

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ1 v2(t) +

(
GPF
a Iα,λ1 v(t)

)2
(2)

=

(
M
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ1 v(t)

)
(

GPF
a Iα,λ1 v(t) −

m
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)

−
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ1

(
(M − v(t))(v(t) −m)

)
for all t > 0, α > 0 where a1 =

λ1−1
λ1

.
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Proof. Let m,M ∈ ℜ and v be an integrable function on [0,∞), for all τ, ρ ∈ [0,∞), we have

(M − v(ρ))(v(τ) −m) + (M − v(τ))(v(ρ) −m) (3)
−(M − v(τ))(v(τ) −m) − (M − v(ρ))(v(ρ) −m)

= v2(τ) + v2(ρ) + 2v(τ)v(ρ).

Multiplying both sides of (3) by 1
λα1Γ(α) e

λ1−1
λ1

(t−τ)(t − τ)α−1, then integrating the resulting identity with respect
to τ from a to t (τ ∈ (0, t), t > 0), we get

(
M − v(ρ)

)(
GPF
a Iα,λ1 v(t) −m

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)
(4)

+
(
M

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ1 v(t)

)
(
v(ρ) −m

)
−

GPF
a Iα,λ1

(
(M − v(t))(v(t) −m)

)
−

(
(M − v(ρ))(v(ρ) −m)

) 1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

= GPF
a Iα,λ1 v2(t) + v2(ρ)

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
+ 2v(ρ)GPF

a Iα,λ1 v(t).

Now, again multiply both side of (4) by 1
λα1Γ(α) e

λ1−1
λ1

(t−ρ)(t − ρ)α−1, then integrating the resulting identity with
respect to ρ from a to t (ρ ∈ (0, t), t > 0), which gives (2), and the lemma is proved.

Theorem 2.2. Let f and 1 be two integrable function on [0,∞), satisfying the condition that

m ≤ f (t) ≤M, p ≤ 1(t) ≤ P,m,M, p,P ∈ ℜ, t ∈ [0,∞), (5)

we have ∣∣∣∣∣∣ 1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ1 f1(t) − GPF

a Iα,λ1 f (t)GPF
a Iα,λ11(t)

∣∣∣∣∣∣ (6)

≤

(
1

2λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)2

(M −m)(P − p)

where a1 =
λ1−1
λ1

.

Proof. Let f and 1 be two function satisfying the condition (5). Define

H(τ, ρ) =
(

f (τ) − f (ρ)
)(
1(τ) − 1(ρ)

)
, τ, ρ ∈ (0, t), t > 0.

It follows that
H(τ, ρ) = f (τ)1(τ) − f (τ)1(ρ) − f (ρ)1(τ) + f (ρ)1(ρ). (7)

Then, multiplying (7) by 1
λα1Γ(α) e

λ1−1
λ1

(t−τ)(t − τ)α−1, by integrating the resulting identity with respect to τ from
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a to t, we get

1
λα1Γ(α)

∫ t

a
H(τ, ρ)e

λ1−1
λ1

(t−τ)(t − τ)α−1dτ (8)

= GPF
a Iα,λ1 f1(t) − 1(ρ)GPF

a Iα,λ1 f (t) − f (ρ)GPF
a Iα,λ11(t)

+ f (ρ)1(ρ)
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
.

Again multiplying (8) by 1
λα1Γ(α) e

λ1−1
λ1

(t−ρ)(t − ρ)α−1, which is positive because ρ ∈ (0, t) and integrating the
resulting identity with respect to ρ from a to t, we have

1
(λα1 )2Γ(α)2

∫ t

a

∫ t

a
H(τ, ρ)e

λ1−1
λ1

(t−τ)e
λ1−1
λ1

(t−ρ)(t − ρ)α−1(t − τ)α−1(t − ρ)α−1dτdρ

= 2
(

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ1 f1(t) − GPF

a Iα,λ1 f (t)GPF
a Iα,λ11(t)

)
.

Applying the Cauchy-Schwarz inequality, we obtain(
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ1 f1(t) − GPF

a Iα,λ1 f (t)GPF
a Iα,λ11(t)

)2

(9)

≤

(
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ1 f 2(t) −

(
GPF
a Iα,λ1 f (t)

)2
)

(
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ112(t) −

(
GPF
a Iα,λ11(t)

)2
)
.

Since
(
M − f (t)

)(
f (t) −m

)
≥ 0 and

(
P − 1(t)

)(
1(t) − p

)
≥ 0, we can write

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ1

((
M − f (t)

)(
f (t) −m

))
≥ 0

and
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ1

((
P − 1(t)

)(
1(t) − p

))
≥ 0.

Thus

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ1 f 2(t) −

(
GPF
a Iα,λ1 f (t)

)2

(10)

≤

(
M

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ1 f (t)

)

×

(
GPF
a Iα,λ1 f (t) −

m
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)
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and

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ112(t) −

(
GPF
a Iα,λ11(t)

)2

(11)

≤

(
P

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ11(t)

)

×

(
GPF
a Iα,λ11(t) − p

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)
.

Combining (9), (10) and (11), using lemma (2.1), we conclude that(
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iα,λ1 f1(t) − GPF

a Iα,λ1 f (t)GPF
a Iα,λ11(t)

)2

(12)

≤

(
M
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ1 f (t)

)

×

(
GPF
a Iα,λ1 f (t) −

m
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)
(13)

×

(
P

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ11(t)

)

×

(
GPF
a Iα,λ11(t) −

p
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)
.

Now, using the elementary inequality 4ab ≤ (a + b)2, a, b ∈ ℜ, we can show that

4
(

M
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ1 f (t)

)
(14)

×

(
GPF
a Iα,λ1 f (t) −

m
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)

≤

(
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
(M −m)

)2

and

4
(

P
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ11(t)

)
(15)

×

(
GPF
a Iα,λ11(t) −

p
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)

≤

(
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
(P − p)

)2

.

From (12), (14) and (15), we get the result (6).
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Lemma 2.3. Let 0 < λ1 ≤ 1 and 0 < λ2 ≤ 1 and let f and 1 be two positive integrable function on [0,∞) then, for
all t > 0, α > 0, β > 0, we have[

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iβ,λ2 f1(t) (16)

+
1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

GPF
a Iα,λ1 f1(t) − GPF

a Iα,λ1 f (t)GPF
a Iβ,λ21(t) − GPF

a Iβ,λ2 f (t)GPF
a Iα,λ11(t)

]2

≤

(
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iβ,λ2 f 2(t) +

1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

GPF
a Iα,λ1 f 2(t) − 2GPF

a Iα,λ1 f (t)GPF
a Iβ,λ2 f (t)

)
(

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iβ,λ212(t) +

1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

GPF
a Iα,λ112(t) − 2GPF

a Iα,λ11(t)GPF
a Iβ,λ21(t)

)

where a1 =
λ1−1
λ1

and a2 =
λ2−1
λ2
.

Proof. Multiplying (8) by 1
λ
β
2Γ(β)

e
λ2−1
λ2

(t−ρ)(t − ρ)β−1 which is positive for ρ ∈ (0, t) and integrate with respect to

ρ from a to t, then applying Cauchy-Schwarz inequality for double integral, we obtain (16).

Lemma 2.4. Let 0 < λ1 ≤ 1 and 0 < λ2 ≤ 1 and let v be a integrable function on [0,∞) and m,M ∈ ℜ, then for all
t > 0, α > 0, β > 0, we have

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iβ,λ2 v2(t) (17)

+
1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

GPF
a Iα,λ1 v2(t)

−2GPF
a Iα,λ1 v(t)GPF

a Iβ,λ2 v(t)

=

(
M

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ1 v(t)

)

×

(
GPF
a Iβ,λ2 v(t) −m

1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

)

+

(
M

1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2
−

GPF
a Iβ,λ2 v(t)

)

×

(
GPF
a Iα,λ1 v(t) −m

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)

−
1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

GPF
a Iα,λ1

(
(M − v(t))(v(t) −m)

)
−

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iβ,λ2

(
(M − v(t))(v(t) −m)

)
,

where a1 =
λ1−1
λ1

and a2 =
λ2−1
λ2
.



S. I. Butt, M. A. Raza, M. Nadeem, E. Karaduman / TJOS 10 (1), 1–9 7

Proof. Multiplying (4) by 1
λ
β
2Γ(β)

e
λ2−1
λ2

(t−ρ)(t − ρ)β−1, which is positive for ρ ∈ (0, t), t > 0, then integrating the

resulting identity with respect to ρ from a to t, we get

(
GPF
a Iα,λ1 v(t) −

m
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)
(18)

×
1

λ
β
2Γ(β)

∫ t

a
e
λ2−1
λ2

(t−ρ)(t − ρ)β−1
(
M − v(ρ)

)
dρ

+

(
M
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ1 v(t)

)

×
1

λ
β
2Γ(β)

∫ t

a
e
λ2−1
λ2

(t−ρ)(t − ρ)β−1
∫ t

a

(
v(ρ −m)

)
dρ

−
GPF
a Iα,λ1

(
(M − v(t))(v(t) −m)

) 1

λ
β
2Γ(β)

∫ t

a
e
λ2−1
λ2

(t−ρ)(t − ρ)β−1dρ

−
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

×
1

λ
β
2Γ(β)

∫ t

a
e
λ2−1
λ2

(t−ρ)(t − ρ)β−1
(
M − v(ρ)

)(
v(ρ) −m

)
dρ

=
1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

GPF
a Iα,λ1 v2(t)

+
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iβ,λ2 v(t)

+2GPF
a Iα,λ1 v(t)GPF

a Iβ,λ2 v2(t).

This gives the proof of lemma (2.4)

Theorem 2.5. Let 0 < λ1 ≤ 1 and 0 < λ2 ≤ 1 let f,g be two integrable function on [0,∞), satisfying the condition
that

m ≤ f (t) ≤M, p ≤ 1(t) ≤ P, m,M, p,P ∈ ℜ

and t ∈ [0,∞). Then for all T > 0, α > 0, β > 0, we have

(
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iβ,λ2 f1(t) (19)

+
1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

GPF
a Iα,λ1 f1(t)

−
GPF
a Iα,λ1 f (t)GPF

a Iβ,λ21(t) − GPF
a Iβ,λ2 f (t)GPF

a Iα,λ11(t)
)2
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≤

[(
M

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ1 f (t)

)
(

GPF
a Iβ,λ2 f (t) −m

1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

)

+

(
M

1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2
−

GPF
a Iβ,λ2 f (t)

)
(

GPF
a Iα,λ1 f (t) −m

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)]

×

[(
P

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1
−

GPF
a Iα,λ11(t)

)
(

GPF
a Iβ,λ21(t) − p

1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

)

+

(
P

1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2
−

GPF
a Iβ,λ21(t)

)
(

GPF
a Iα,λ11(t) − p

1
λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

)]
.

Proof. Since
(
M − f (t)

)(
f (t) −m

)
≥ 0 and

(
P − 1(t)

)(
1(t) − p

)
≥ 0. Then we can write

−
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iβ,λ2

(
(M − f (t))( f (t) −m)

)
(20)

−
1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

GPF
a Iα,λ1

(
(M − f (t))( f (t) −m)

)
≤ 0

and

−
1

λα1Γ(α)

∞∑
k1=0

ak1
1

k1!
(t − a)α+k1

α + k1

GPF
a Iβ,λ2

(
(P − 1(t))(1(t) − p)

)
(21)

−
1

λ
β
2Γ(β)

∞∑
k2=0

ak2
2

k2!
(t − a)β+k2

β + k2

GPF
a Iα,λ1

(
(P − 1(t))(1(t) − p)

)
≤ 0.

Applying lemma (2.4) to f and 1, then using lemma (2.3) and the equation (20) and (21), we get (19).
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